A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Morishita, T.

Paper Title Page
TPPT041 RF Tuning and Fabrication Status of the First Module for J-PARC ACS 2684
 
  • H. Ao, T. Morishita, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAERI, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  J-PARC Linac starts with 180-MeV SDTL temporary, and it is upgraded to 400-MeV with 21 ACS (Annular Coupled Structure) modules and two ACS bunchers and two debunchers. First buncher module is under fabrication, and second buncher and a few accelerating modules are also planed until FY2006. The first ACS module consists of two 5-cells ACS tanks and a 5-cells bridge cavity for the buncher module. Three RF tuners are installed to the bridge cavity for fine RF tuning. An operating frequency should be tuned to 972 MHz within the fine-tuning range before a brazing process in a factory. The tuning procedure has been studied with RF simulation analysis and cold-model measurements for ACS and bridge cells. This paper describes RF tuning results, fabrication status and related development items.  
WPAE044 An Alignment of J-PARC Linac 2851
 
  • T. Morishita, H. Ao, T. Ito, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAERI, Ibaraki-ken
  • M. Ikegami, C. Kubota, F. Naito, E. Takasaki, H. Tanaka, K. Yoshino
    KEK, Ibaraki
 
  J-PARC linear accelerator components are now being installed in the accelerator tunnel, whose total length is more than 400 m including the beam transport line to RCS (Rapid Cycling Synchrotron). A precise alignment of accelerator components is essential for a high quality beam acceleration. In this paper, planned alignment schemes for the installation of linac components, the fine alignment before beam acceleration, and watching the long term motion of the building are described. Guide points are placed on the floor, which acts as a reference for the initial alignment at the installation and also as a relay point for the long surveying network linking at the fine alignment. For a straight line alignment, the wire position sensor is placed on the offset position with respect to the beam center by a target holder, then a single wire can cover the accelerator cavities and the focusing magnets at the DTL-SDTL section (120m). The hydrostatic levering system (HLS) is used for watching the floor elevation (changes) over the long period.