A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Martini, M.

Paper Title Page
MOPC001 Final Results from the Novel Multiturn Extraction Studies at CERN Proton Synchrotron 117
 
  • M. Giovannozzi, R. Cappi, S.S. Gilardoni, M. Martini, E. Métral, R.R. Steerenberg
    CERN, Geneva
  • A.-S. Müller
    FZK, Karlsruhe
 
  Recently a novel approach to perform multi-turn extraction was proposed based on beam splitting in the transverse phase space by means of trapping inside stable islands. An experimental campaign was launched since the year 2002 to assess the feasibility of such an extraction scheme at the CERN Proton Synchrotron. During the year 2004 run, a high-intensity single-bunch beam was successfully split and the generated beamlets separated without any measurable losses. The latest experimental results are presented and discussed in details in this paper. These achievements represent a substantial step forward with respect to what achieved in previous years, as only a low-intensity bunch could be split without losses. Furthermore, this opens the possibility of using such a technique for routine operation with the high-intensity proton beams required for the planned CERN Neutrino to Gran Sasso Project.  
RPPE005 Ions for LHC: Beam Physics and Engineering Challenges 946
 
  • S. Maury, M.-E. Angoletta, V. Baggiolini, A. Beuret, A. Blas, J. Borburgh, H.-H. Braun, C. Carli, M. Chanel, T. Fowler, S.S. Gilardoni, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, E. Mahner, D. Manglunki, M. Martini, M.M. Paoluzzi, J. Pasternak, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, K. Schindl, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, Th. Zickler
    CERN, Geneva
 
  The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges. Conversion of the Low Energy Antiproton Ring (LEAR) to a Low Energy Ion Ring (LEIR) is under way: the high-current electron cooling system, novel broad-band RF cavities and vacuum equipment to achieve 10-12 mbar are the major challenges. Commissioning of LEIR with beam will start in the middle of 2005. Major hardware changes in Linac3 include the installation of the new ECR ion source and of the energy ramping cavity. The PS will have a new injection system and RF gymnastics. A stripping insertion between PS and SPS must not disturb the proton operation. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.