A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lundquist, M.

Paper Title Page
TPPE038 Thermal Hydraulic Design of PWT Accelerating Structures 2524
 
  • D. Yu, A. Baxter, P. Chen, M. Lundquist, Y. Luo
    DULY Research Inc., Rancho Palos Verdes, California
 
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-03ER83846.

Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

 
RPPP046 An L-Band Polarized Electron PWT Photoinjector for the International Linear Collider (ILC) 2902
 
  • D. Yu, A. Baxter, P. Chen, M. Lundquist, Y. Luo, A. S. Smirnov
    DULY Research Inc., Rancho Palos Verdes, California
 
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-03ER83846.

A multi-cell, standing-wave, L-band, p-mode, plane-wave-transformer (PWT) photoinjector with an integrated photocathode in a novel linac structure is proposed by DULY Research Inc. as a polarized electron source. The PWT photoinjector is capable of operation in ultra high vacuum and moderate field gradient. Expected performance of an L-band polarized electron PWT injector operating under the parameters for the International Linear Collider is presented. The projected normalized transverse rms emittance is an order of magnitude lower than that produced with a polarized electron dc gun followed by subharmonic bunchers.