A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lin, Y.

Paper Title Page
TPAE065 Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility 3673
 
  • S.H. Gold
    NRL, Washington, DC
  • H. Chen, Y. Hu, Y. Lin, C. Tang
    TUB, Beijing
  • W. Gai, C.-J. Jing, R. Konecny, J.G. Power
    ANL, Argonne, Illinois
  • A.K. Kinkead
    ,
  • C.D. Nantista, S.G. Tantawi
    SLAC, Menlo Park, California
 
  Funding: Work supported by DOE and ONR.

This paper will describe a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by the high-power 11.424-GHz magnicon that was developed by NRL and Omega-P, Inc. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW.* The facility will include a 5-MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to ~8 MV/m.** SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The initial goal is to produce a compact 20-MeV dielectric-loaded test accelerator.

*O. A. Nezhevenko et al., Proc. PAC 2003, p. 1128.**S. H. Gold et al., AIP Conf. Proc. 691, p. 282.

 
RPPE072 The Improvement and Data Acquisition Systems on Electrical Systems and Grounding Networks in NSRRC 3868
 
  • Y.-H. Liu, J.-C. Chang, J.-R. Chen, Y. Lin, Z.-D. Tsai
    NSRRC, Hsinchu
 
  Funding: NSRRC.

The purpose of this paper is to declare the improvement on electrical and grounding systems in NSRRC. In electrical power system, an Automated Voltage Regulator (AVR) was established to RF system in 2003. The variation of voltage supply from Taiwan Power Company (TPC) is reduced from 3% to 0.2% through the AVR system. And a Supervisory Control and Data Acquisition (SCADA) system was also setup to monitoring the electrical power conditions in each power station. After the high precision grounding systems were constructed in 2004, the stability of beam line was raised. For comprehending the grounding current and noise control, a grounding monitoring system with 32 channels was built in the storage ring. The grounding currents of 4 kickers, one septum and grounding bus are on-line acquisition. Two Electromagnetic Field (EMF) apparatuses were also installed to collect electrical and magnetic fields in the R1 section. It was observed that the electromagnetic field was correlated to grounding currents in certain locations. Injection effects were clearly found in most monitored data. Some improvement works, including expansion of the grounding monitoring system composing analytical software will integrate in the next step.