A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Legg, R.A.

Paper Title Page
RPAE070 Recent Developments at Aladdin 3813
 
  • K. Jacobs, J. Bisognano, R.A. Bosch, D. Eisert, M.V. Fisher, M.A. Green, R.G. Keil, K. J. Kleman, R.A. Legg, G.C. Rogers, J.P. Stott
    UW-Madison/SRC, Madison, Wisconsin
 
  Funding: Work supported by the U.S. NSF under Award No. DMR-0084402.

Following on the success of lower emittance operation at 800 MeV, SRC is pursuing a number of additional enhancements to the performance of the Aladdin storage ring. Work on Aladdin has included development of low emittance lattices at 1 GeV, which will maximize the capabilities of a recently installed spectromicroscopy beamline and a proposed high-resolution keV beamline. Installation of one-meter long insertion devices in the short straight sections within the quadrant arcs of the four sided storage ring is being considered to increase the number of undulator beamlines from four to possibly eight. Studies have been made to determine what is the minimum insertion device gap that does not interfere with nominal ring operation (injection, ramping, and lifetime at full energy), and indicate that smaller-gapped devices for higher photon energy are reasonable. Lifetime increases or further emittance reductions appear possible with modest aperture increases at a small number of points on the ring. Finally, planning is under way for long term projects such as a new injector or a next generation VUV/soft-xray source for the Midwest. Details will be presented.