A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kuznetsov, G.I.

Paper Title Page
TPPE029 Measurements of Ion Selective Containment on the RF Charge Breeder Device BRIC 2065
 
  • V. Variale, A. Boggia, T. Clauser, A. Rainò, V. Valentino
    INFN-Bari, Bari
  • P.A. Bak, M. A. Batazova, G.I. Kuznetsov, S. Shiyankov, B.A. Skarbo
    BINP SB RAS, Novosibirsk
  • G. Verrone
    Università e Politecnico di Bari, Bari
 
  Funding: Istituto Nazionale Fisica Nucleare.

The "charge state breeder" BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) Quadrupole aiming to filtering the unwanted elements and then making a more efficient containment of the wanted ions. In this contribution, the measurements of the selective effect on the ion charge state containement of the RF quadrupole field, applied on the ion chamber, will be reported and discussed. The ion charge state analisys of the ions trapped in BRIC seem confirm, as foreseen by simulation results carried out previously, that the selective containment can be obtained. A modification of the collector part to improve the ion extraction of BRIC will be also presented and shortly discussed.

 
WPAP023 Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW 1832
 
  • I.V. Kazarezov, V. Auslender, V.E. Balakin, A.A. Bryazgin, A.V. Bulatov, I.I. Glazkov, I.V. Kazarezov, E.N. Kokin, G.S. Krainov, G.I. Kuznetsov, A.M. Molokoedov, A.F.A. Tuvik
    BINP SB RAS, Novosibirsk
 
  The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water–alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.  
RPAP015 Modeling of Internal Injection and Beam Dynamics for High Power RF Accelerator 1419
 
  • M.A. Tiunov, V. Auslender, M.M. Karliner, G.I. Kuznetsov, I. Makarov, A.D. Panfilov, V.V. Tarnetsky
    BINP SB RAS, Novosibirsk
 
  Funding: The work is supported by ISTC grant #2550.

A new high power electron accelerator for industrial applications is developed in Novosibirsk. Main parameters of the accelerator are: operating frequency of 176 MHz, energy of electrons of 5 MeV, average beam power up to 300 kW. The accelerator consists of a chain of accelerating cavities, connected by the on-axis coupling cavities with coupling slots in the walls. A triode RF gun on the base of grid-cathode unit placed on the wall of the first accelerating cavity is used for internal injection of electrons. The paper presents the results of modeling and optimization of the accelerating structure, internal injection, and beam dynamics.

 
RPAP016 High Power Electron Accelerator Prototype 1502
 
  • V.O. Tkachenko, V. Auslender, V.G. Cheskidov, G.I. Korobeynikov, G.I. Kuznetsov, A.N. Lukin, I. Makarov, G. Ostreiko, A.D. Panfilov, A. Sidorov, V.V. Tarnetsky, M.A. Tiunov
    BINP SB RAS, Novosibirsk
 
  Funding: The work is supported by ISTC grant #2550.

In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.