A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Harkay, K.C.

Paper Title Page
MPPE066 Streak Camera Studies of Vertical Synchro-Betatron-Coupled Electron Beam Motion in the APS Storage Ring 3694
 
  • B.X. Yang, M. Borland, W. Guo, K.C. Harkay, V. Sajaev
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

We present experimental studies of synchro-betatron-coupled electron beam motion in the Advanced Photon Source storage ring. We used a vertical kicker to start the beam motion. When the vertical chromaticity is nonzero, electrons with different initial synchrotron phases have slightly different betatron frequencies from the synchronous particle, resulting in a dramatic progression of bunch-shape distortion. Depending on the chromaticity and the time following the kick, images ranging from a simple vertical tilt in the bunch to more complicated twists and bends are seen with a visible light streak camera. Turn-by-turn beam position monitor data were taken as well. We found that the experimental observations are well described by the synchro-betatron-coupled equations of motion. We are investigating the potential of using the tilted bunch to generate picosecond x-ray pulses. Also note that the fast increase in vertical beam size after the kick is dominated by the internal synchro-betatron-coupled motion of the electron bunch. Experimentally this increase could be easily confused with decoherence of vertical motion if the bunch is only imaged head-on.

 
TOAB009 Generation of Short X-Ray Pulses Using Crab Cavities at the Advanced Photon Source 668
 
  • K.C. Harkay, M. Borland, Y.-C. Chae, G. Decker, R.J. Dejus, L. Emery, W. Guo, D. Horan, K.-J. Kim, R. Kustom, D.M. Mills, S.V. Milton, G. Pile, V. Sajaev, S.D. Shastri, G.J. Waldschmidt, M. White, B.X. Yang
    ANL, Argonne, Illinois
  • A. Zholents
    LBNL, Berkeley, California
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

There is growing interest within the user community to utilize the pulsed nature of synchrotron radiation from storage ring sources. Conventional third-generation light sources can provide pulses on the order of 100 ps but typically cannot provide pulses of about 1 ps that some users now require to advance their research programs. However, it was recently proposed by A. Zholents et al. to use rf orbit deflection to generate subpicosecond X-ray pulses.* In this scheme, two crab cavities are used to deliver a longitudinally dependent vertical kick to the beam, thus exciting longitudinally correlated vertical motion of the electrons. This makes it possible to spatially separate the radiation coming from different longitudinal parts of the beam. An optical slit can then be used to slice out a short part of the radiation pulse, or an asymetrically cut crystal can be used to compress the radiation in time. In this paper, we present a feasibility study of this method applied to the Advanced Photon Source. We find that the pulse length can be decreased down to a few-picosecond range using superconducting crab cavities.

*A. Zholents et al., NIM A 425, 385 (1999).

 
RPAE073 Generating Picosecond X-Ray Pulses with Beam Manipulation in Synchrotron Light Sources 3898
 
  • W. Guo, M. Borland, K.C. Harkay, V. Sajaev, B.X. Yang
    ANL, Argonne, Illinois
 
  Funding: Work supported by U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

The length of x-ray pulses generated by storage ring light sources is usually tens of picoseconds. For example, the value is 40 ps rms at the Advanced Photon Source (APS). Methods of x-ray pulse compression are of great interest at the APS. One possible method, per Zholents et al., is to tilt the electron bunch with deflecting rf cavities.* Alternately, we found that the electron bunch can develop a tilt after application of a vertical kick in the presence of nonzero chromaticity. After slicing, the x-ray pulse length is determined by the tilt angle and the vertical beam size. In principal, sub-picosecond pulses can be obtained at APS. To date we have observed 6 ps rms visible light pulses with a streak camera. Efforts are underway to attempt further compression of the x-ray pulse and to increase the brilliance. This method can be easily applied to any storage ring light sources to generate x-ray pulses up to two orders of magnitude shorter than the electron bunch length. In this paper, we will present the theory of bunch tilt, particularly the synchrobetatron coupling and decoherence beam dynamics, and the simulation and the experimental results will also be shown as verification.

*A. Zholents et al., NIM A 425, 385(1999).

 
RPPP045 Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider 2884
 
  • M.T.F. Pivi, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A.F. Ghalam
    USC, Los Angeles, California
  • K.C. Harkay
    ANL, Argonne, Illinois
  • K. Ohmi
    KEK, Ibaraki
  • R. Wanzenberg
    DESY, Hamburg
  • A. Wolski
    LBNL, Berkeley, California
  • F. Zimmermann
    CERN, Geneva
 
  Funding: Work supported by the U.S. DOE under contracts DE-AC02-76SF00515.

With the recommendation that the future International Linear Collider (ILC) should be based on superconducting technology, there is considerable interest in exploring alternate designs for the damping rings (DR). The TESLA design was 17 km in circumference with a "dog-bone" configuration. Two other smaller designs have been proposed that are 6 km and 3 km in length. In the smaller rings, collective effects may impose the main limitations. In particular for the positron damping ring, an electron cloud may be produced by ionization of residual gas or photoelectrons and increase through the secondary emission process. The build-up and development of an electron cloud is more severe with the higher average beam current in the shorter designs. In this paper, we present recent computer simulation results for the electron cloud build-up and instability thresholds for the various DR configurations.