A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Han, H.S.

Paper Title Page
MPPT017 Design of Switching Magnet for 20-MeV Beamlines at PEFP 1575
 
  • H.S. Suh, H.S. Han, S.-H. Jeong, Y.G. Jung, H.-S. Kang, H.-G. Lee, K.-H. Park, C. K. Ryu
    PAL, Pohang, Kyungbuk
 
  Funding: Ministry of Science and Technology.

The PEFP(Proton Engineering Frontier Project) proton linac is designed to have two proton beam extraction lines at the 20-MeV and 100-MeV end. The 20-MeV extraction line is branched out into 5 beamlines by using the switching magnet. The magnet bends the proton beam by +20, +10, 0, -10, -20 degrees, respectively, and has an AC frequency of 5 Hz with a programmable ac power supply. It employs an H-shape, 0.45 T magnetic field, 0.5 m effective magnet length, 30x5 cm bore aperture. The pole shape is optimized for the field levels. Laminated steel of 0.5 mm is enough to suppress the eddy current effect in the yoke. This paper presents the magnet specification and primary design.

 
MPPT075 Analysis and Design of Backing Beam for Multipole Wiggler (MPW14) at PLS 3940
 
  • H.-G. Lee, C.W. Chung, H.S. Han, Y.G. Jung, D.E. Kim, W.W. Lee, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk
 
  Pohang Accelerator Laboratory (PAL) had developed and installed a Multipole Wiggler (MPW14) to utilize high energy synchrotron radiation at Pohang Light Source (PLS). The MPW14 is a hybrid type device with period of 14 cm, minimum gap of 14 mm, maximum flux density of 2.02 Tesla and total magnetic structure length of 2056 mm. The support locations and structure of an insertion device are optimized to achieve a minimum deflection due to the magnetic loads. A Finite Element Analysis (FEA) is performed to find out the amount of maximum deflection and optimal support positions on the backing beam, the support and drive structures of the MPW14 under expected magnetic load of 14 tons. To reduce the deflection effect further, two springs are designed and installed to compensate the gap dependent magnetic loads. The optimized deflection is estimated to be about 20.6 ? while the deflection before optimization is 238 ?.  
WPAE060 Programmable Power Supply for AC Switching Magnet of Proton Accelerator 3508
 
  • S.-H. Jeong, H.S. Han, Y.G. Jung, H.-S. Kang, H.-G. Lee, K.-H. Park, C. K. Ryu, H.S. Suh
    PAL, Pohang, Kyungbuk
  • H.H. Lee
    UU, Gyeongju
 
  Funding: Ministry of Science and Technology.

The 100-MeV PEFP proton linac has two proton beam extraction lines for user’ experiment. Each extraction line has 5 beamlines and has 5 Hz operating frequency. An AC switching magnet is used to distribute the proton beam to the 5 beamlines, An AC switching magnet is powered by PWM-controlled bipolar switching-mode converters. This converter is designed to operate at ±350A, 5 Hz programmable step output. The power supply is employed IGBT module and has controlled by a DSP (Digital Signal Process). This paper describes the design and test results of the power supply.

 
RPPE003 Operational Experience of Cooling Water Systems for Accelerator Components at PLS 850
 
  • K.R. Kim, C.W. Chung, H.S. Han, H.-G. Kim, Y.-C. Kim, I.S. Ko, B.H. Lee
    PAL, Pohang, Kyungbuk
 
  Funding: Work supported by MOST and POSCO in Republic of Korea.

The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly developed operating interfaces such as EPICS accelerator control systems. The important design and operational features of PLS cooling water systems are presented as well as lessons learned from around 10-years normal operation.