A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Garoby, R.

Paper Title Page
WPAT018 The LEIR RF System 1619
 
  • M.M. Paoluzzi, R. Garoby, M. Haase, P. Maesen, C. Rossi
    CERN, Geneva
  • C. Ohmori
    KEK, Ibaraki
 
  The lead-lead physics program of LHC relies on major changes of the CERN ion injector chain. In this framework, the conversion of LEAR (low energy antiproton ring) into the Low Energy Ion Ring (LEIR) is central and implies a new accelerating system covering a wide frequency range (0.35 - 5 MHz,) with a moderate voltage (4 kV). For this purpose two new wide-bandwidth cavities, loaded with FinemetŪ magnetic alloy cores, have been built in collaboration with KEK. Two 60 kW RF power amplifiers have also been built and the RF systems are now installed in the LEIR ring. They individually cover the whole frequency range without tuning and allow multi-harmonic operation. The design has been guided by need of safety margins, reliability and ease of maintenance. Some design aspects are presented as well as the performance achieved.  
RPPE001 The CARE Accelerator R&D Programme in Europe 749
 
  • O. Napoly, R. Aleksan, A. Devred
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • A. Den Ouden
    Twente University, Laser Physics and Non-Linear Optics Group, Enschede
  • R. Garoby, R. Losito, L. Rinolfi, F. Ruggiero, W. Scandale, D. Schulte, M. Vretenar
    CERN, Geneva
  • T. Garvey, F. Richard
    LAL, Orsay
  • A. Ghigo
    INFN/LNF, Frascati (Roma)
  • E. Gschwendtner
    CUI, Geneva
  • H. Mais, D. Proch
    DESY, Hamburg
  • V. Palladino
    INFN-Napoli, Napoli
 
  Funding: This work is supported by the European Community-Research Infrastructure Activity under the FP6 “Structuring the European Research Area” programme (CARE, contract number RII3-CT-2003-506395).

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards HEP projects, has been launched in January 2004 by the main European laboratories and the European Commission within the 6th Framework Programme. This programme aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the R&D plans of the four main R&D activities and report on the results and progress obtained so far.

 
ROPC004 Recent Intensity Increase in the CERN Accelerator Chain 413
 
  • E.N. Shaposhnikova, G. Arduini, T. Bohl, M. Chanel, R. Garoby, S. Hancock, K. Hanke, T.P.R. Linnecar, E. Métral, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva
 
  Future requests for protons from the physics community at CERN, especially after the start-up of the CNGS experiments in 2006, can only be satisfied by a substantial increase in the SPS beam intensity per pulse. In September 2004 a three weeks beam run was dedicated to high intensity; all accelerators in the chain were pushed to their limits to study intensity restrictions and find possible solutions. New record intensities were obtained in the accelerators of the PS & SPS Complex with this fixed-target type beam which is different from the nominal LHC beam. The challenges in producing this high-intensity beam are described together with the measures needed to make it fully operational.