A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Garnett, R.W.

Paper Title Page
MPPT055 The LANSCE Switchyard Kicker Project 3310
  • M.S. Gulley, H.W. Alvestad, W.C. Barkley, D.B. Barlow, D.S. Barr, G.A. Bennett, L.J. Bitteker, E. Bjorklund, M.J. Borden, M.J. Burns, G. Carr, J.L. Casados, S. Chacon, S. Cohen, J.F. Cordova, J.A. Faucett, L.E. Fernandez, D.H. Fitzgerald, M. Fresquez, F.R. Gallegos, R.W. Garnett, J.D. Gilpatrick, F. Gonzales, F.W. Gorman, M.J. Hall, D.J. Hayden, D. Henderson, G.D. Johns, D.M. Kerstiens, M.D. Lusk, A.J. Maestas, H.P. Marquez, D. Martinez, M.P. Martinez, J.B. Merrill, R.E. Meyer, E.A. Morgan, A.C. Naranjo, J.F. O'Hara, F.R. Olivas, M.A. Oothoudt, T.D. Pence, E.M. Perez, C. Pillai, B.J. Roller, A.M. Romero, D.B. Romero, F.P. Romero, G. Sanchez, J.B. Sandoval, S. Schaller, F.E. Shelley, R.B. Shurter, J.R. Sims, J.L. Stockton, J. Sturrock, V.P. Vigil, J. Zaugg
    LANL, Los Alamos, New Mexico
  Until 2003, the existing configuration of the LANSCE switchyard did not allow simultaneous delivery of the H- beam to Lines D and X. In the late 1990’s, with increased activities in Areas B and C, which serve the ultracold neutron experiments (UCN) and proton radiography (PRad), respectively, planning began to increase beam availability to all areas by installing a kicker system, dubbed the "Switchyard Kicker." The Switchyard Kicker is a system of two pulsed and two direct current magnets that enables simultaneous, uninterrupted beam delivery to Line D for the Lujan Center and the Weapons Neutron Research (WNR) Facility and, on request, a tailored H- beam pulse to Line X for the pRad and UCN research areas. The project received funding in July 2001 for design and implementation. During the 2003 Extended Maintenance Period this upgrade was installed in the Switchyard and commissioned during the Accelerator Turn-On period in the summer of 2003. With the commissioning successful, LANSCE now routinely operates in "Kick" mode, delivering simultaneous beam to Line X and Line D, increasing beam availability to all areas and simplifying production scheduling.  
FPAT088 Advanced Beam-Dynamics Simulation Tools for RIA 4218
  • R.W. Garnett, J.A. Billen, T.P. Wangler
    LANL, Los Alamos, New Mexico
  • K.R. Crandall
    TechSource, Santa Fe, New Mexico
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  • R.C. York, Q. Zhao
    NSCL, East Lansing, Michigan
  Funding: U.S. Department of Energy Contract W-7405-ENG-36.

We are developing multuparticle beam-dynamics simulation codes for RIA driver linac simulations extending from the low-energy beam transport line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. In this paper we present the status of the work, describe some recent additions to the codes, and show preliminary end-to-end simulation results for a representative driver-linac design.