A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dillon-Townes, L.A.

Paper Title Page
RPAT070 Mechanical and Thermal Design of the CEBAF Hall A Beam Calorimeter 3819
 
  • M.E. Bevins, A.R. Day, P. Degtiarenko, L.A. Dillon-Townes, A. Freyberger, R. Gilman, A. Saha, S. Slachtouski
    Jefferson Lab, Newport News, Virginia
 
  Funding: DOE.

A calorimeter has been proposed to provide 0.5% - 1.0% absolute measurements of beam current in the Hall A end station of the Thomas Jefferson National Accelerator Facility (JLab) CEBAF machine. Silver and copper calorimeters built in the 1960’s achieved precisions of about 1%. Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that will minimize beam loss while maintaining a rapid thermal response time. Heat leaks will be minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

 
RPPE010 Beam Transport Devices for the 10kW Free Electron Laser at Thomas Jefferson National Accelerator Facility 1210
 
  • L.A. Dillon-Townes, C.P. Behre, M.E. Bevins, G.H. Biallas, D. Douglas, C.W. Gould, J.G. Gubeli, D.H. Kashy, R. Lassiter, L. Munk, G. Neil, M.D. Shinn, S. Slachtouski, D. Waldman
    Jefferson Lab, Newport News, Virginia
 
  Funding: Department of Energy

The beam transport vacuum components for the 10 kW Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (TJNAF) were designed to address 10 MeV electron beam characteristics and maintain an accelerator transport vacuum of 10-9 torr. The components discussed include a novel zero length beam clipper, novel shielded bellows, one decade differential pumping stations with a 7.62 cm (3.0”) aperture, and a 50 kW beam dump. Incorporation of these accelerator transport components assist in establishing the environment needed for the electron beam to produce the optical light required to lase at 10 kW.