A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

D'Arienzo, M.

Paper Title Page
WPAE010 Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator 1192
  • A. Coniglio, M.P. Pillon, S. Sandri
    ENEA C.R. Frascati, Frascati (Roma)
  • M. D'Arienzo
    CNR/RFX, Padova
  Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron activation in the material of the system components. Radioactive inventory and contact dose rate were assessed considering the potential operative scenarios.