A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Corsini, R.

Paper Title Page
TPAT097 CLIC Drive Beam and LHC Based FEL-Nucleus Collider 4320
 
  • O. Yavas
    Ankara University, Faculty of Engineering, Tandogan, Ankara
  • H.-H. Braun, R. Corsini
    CERN, Geneva
  • S. Sultansoy
    Gazi University, Faculty of Science and Arts, Ankara
 
  Funding: Ankara University, Ankara, TURKEY.

Main parameters of CLIC-LHC based FEL-Nucleus collider are determined. The matching of beam structures for maximum luminosity is studied. The advantages of the collider with respect to the traditional Nuclear Resonance Fluorescence (NRF) methods are presented considering (/Gamma-/Gamma(prime)) reactions. Determination of unknown decay width, spin and parity of excited levels is discussed for Pb nucleus.

 
TPPT020 30 GHz Power Production in CTF3 1695
 
  • W. Wuensch, C. Achard, H.-H. Braun, G. Carron, R. Corsini, A. Grudiev, S.T. Heikkinen, D. Schulte, J.P.H. Sladen, I. Syratchev, F. Tecker, I. Wilson
    CERN, Geneva
 
  One of the major objectives of CTF3 (CLIC Test Facility) is the production of 30 GHz power for the high-gradient testing of CLIC accelerating structures. To this end a dedicated beam line, power generating structure and power transfer line have been designed, installed and commissioned. 52 MW of 30 GHz power with a pulse length of 74 ns and a repetition rate of 16 Hz were delivered to the high-gradient test area. This will allow operation of test accelerating structures in the coming run of CTF3 up to the nominal CLIC accelerating gradient of 150 MV/m and beyond the nominal pulse length. The system is described and the performances of the CTF3 linac, beam line and the rf components are reviewed.  
RPPP001 Commissioning and First Measurements on the CTF3 Chicane 785
 
  • A. Ghigo, D. Alesini, G. Benedetti, C. Biscari, M. Castellano, A. Drago, D. Filippetto, F. Marcellini, C. Milardi, B. Preger, M. Serio, F. Sgamma, A. Stella, M. Zobov
    INFN/LNF, Frascati (Roma)
  • R. Corsini, T. Lefevre, F. Tecker
    CERN, Geneva
 
  The transfer line between the linac and the first recombination ring (Delay Loop) of the CTF3 project hs been installed at CERN in spring-summer 2004. In the transfer line a magnetic chicane is used to tune the length of the bunches coming from the linac in order to minimize the Coherent Synchrotron Radiation contribution to the beam energy spread in the recombination system. The first measurements of the beam parameters at several linac and stretcher settings are described. We report the compression curve as a function of the optical parameter R56 representing the dependence of the longitudinal position of a particle on its energy, obtained by measuring the bunch length with a 3 GHz RF deflector.