A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bengtsson, J.

Paper Title Page
MPPE020 Control of Dynamic Aperture for Synchrotron Light Sources 1670
 
  • J. Bengtsson
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the U.S. Department of Energy Contract Number DE-AC02-98CH10886.

Given the following frameworks: "A Hamiltonian-Free Description of Single Particle Dynamics for Hopelessly Complex Periodic Systems" (Forest, 1990), "Normal Form Methods for Complicated Periodic Systems" (Forest, Berz, Irwin, 1989), "The Correct Local Description for Tracking in Rings" (Forest, 1994), "The C++ Programming Language" (Stroustrup, 1985), we have designed a compact object oriented beam dynamics class by re-using existing FORTRAN libraries for: Truncated Power Series Algebra (Berz, SSC, 1988), and Map Normal Rorm (Forest, CBP, LBNL, 1990). In other words, implemented a numerical- and analytical model for: 6-dim phase space tracking, with classical radiation, and evaluation of equilibrium emittance, driving terms, amplitude dependent tune shifts, chromaticity, momentum compaction, etc., to arbitrary order, with self-consistent treatment of magnet errors. The tool was developed for the lattice design of NSLS-II.

 
RPAE056 NSLS II: The Future of the NSLS 3345
 
  • J.B. Murphy, J. Bengtsson, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S. Chouhan, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E.D. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, N.A. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886

The National Synchrotron Light Source at BNL was the first dedicated light source facility and it has now operated for more than 20 years. During this time the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultra-high brightness (~10E21) electron storage ring, tailored to the 0.3-20 KeV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.

 
RPAE057 Dynamic Aperture Optimization for Low Emittance Light Sources 3378
 
  • S.L. Kramer, J. Bengtsson
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886.

State of the art low emittance light source lattices, require small bend angle dipole magnets and strong quadrupoles. This in turn creates large chromaticity and small value of dispersion in the lattice. To counter the high chromaticity strong sextupoles are required which limit the dynamic aperture. Traditional methods for expanding the dynamic aperture use harmonic sextupoles to counter the tune shift with amplitude. This has been successful up to now, but is non-deterministic and limited as the sextupole strength increases, driving higher order nonlinearities. We have taken a different approach that makes use of the tune flexibility of a TBA lattice to minimize the lowest order nonlinearities, freeing the harmonic sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the NSLS-II lattice.