A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Balewski, K.

Paper Title Page
MPPP022 The Impedance of Selected Components of the Synchrotron Light Source Petra III 1751
 
  • R. Wanzenberg, K. Balewski
    DESY, Hamburg
 
  At DESY it is planned to convert the PETRA ring into a synchrotron radiation facility, called PETRA III, in 2007. Since the impedance of the machine determines its performance with respect to coupled and single bunch instabilities it is important to know the wakefields and higher order modes (HOMs) of the different components of the vacuum system. Numerical calculations of wakefields and HOMs are presented for several components of PETRA III, including the rf-cavities, shielded bellows and tapered vacuum chamber transitions. The impedance of these components is presented in terms of the loss and kick parameters.  
RPAE036 Damping Wigglers for the PETRA III Light Source 2446
 
  • M. Tischer, K. Balewski, W. Decking, M. Seidel, L. Yongjun
    DESY, Hamburg
  • V. Kuzminykh, E. Levichev, P. Vobly, K. Zolotariov
    BINP SB RAS, Novosibirsk
 
  Within the reconstruction of the PETRA booster ring at DESY towards a third generation light source after 2007, damping wigglers will be installed to reduce the emittance to a value of 1 nmrad. Two damping sections in the long straights of PETRA have been assigned to accommodate 20 wigglers in total. The wigglers will be permanent magnet devices with a fixed gap which are surrounded by an iron enclosure to reduce the leakage flux. Each wiggler will provide a damping integral of 4 T2m per segment and generate a synchrotron radiation power of 42 kW. A short one period long prototype has recently been built to prove the magnetic design and study the correction scheme for tuning the pole strength. The wiggler segments will be followed by an SR absorber shading the downstream quadrupole and successive wiggler segment, the accumulated on-axis power of about 200 kW will be taken up by the final absorber at the damping section end.  
RPAT083 Beam Profile Measurements and Simulations of the PETRA Laser-Wire 4123
 
  • J. Carter, I.V. Agapov, G.A. Blair, G.E. Boorman, C.D. Driouichi, F. Poirier, M.T. Price
    Royal Holloway, University of London, Surrey
  • K. Balewski, H.-C. Lewin, S. Schreiber, K. Wittenburg
    DESY, Hamburg
  • S.T. Boogert, S. Malton
    UCL, London
  • N. Delerue, D.F. Howell
    OXFORDphysics, Oxford, Oxon
  • T.  Kamps
    BESSY GmbH, Berlin
 
  The laser-wire will be an essential diagnostic tool at the International Linear Collider and advanced light sources. It uses a finely focussed laser beam to measure the transverse profile of electron bunches by detecting the Compton-scattered photons (or electrons) downstream of where the laser beam intersects the electron beam. Such a system has been installed at the PETRA storage ring at DESY, which uses a piezo-driven mirror to scan the laser light across the electron beam. Latest experimental results are presented and compared to detailed simulations using Geant4.