Keyword: LEBT
Paper Title Other Keywords Page
MOPLO18 Thermal Analysis of the LANSCE H+ RFQ Test Stand Faraday Cup rfq, MEBT, linac, interface 274
 
  • E.N. Pulliam, I. Draganić, J.L. Medina, J.P. Montross, J.F. O’Hara, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) op-erates one of the nation’s most powerful linear accelera-tors (LINAC). Currently the facility utilizes two 750 keV Cockcroft-Walton (CW) based injectors for transporting H+ and H beams into the 800 MeV accelerator. A Radio Frequency Quadrupole (RFQ) design is being proposed to replace the aged CW injectors. An important component of the RFQ Test Stand is the Faraday cup that is assem-bled at the end of the Low Energy Beam Transport (Phase 1 LEBT) and Medium Energy Beam Transport (Phase 3 MEBT). The Faraday cup functions simultaneously as both a beam diagnostic and as a beam stop for each of the three project phases. This paper describes various aspects of the design and analysis of the Faraday cup. The first analysis examined the press fit assembly of the graphite cone and the copper cup components. A finite element analysis (FEA) evaluated the thermal expansion proper-ties of the copper component, and the resulting material stress from the assembly. Second, the beam deposition and heat transfer capability were analyzed for LEBT and MEBT beam power levels. Details of the calculations and analysis will be presented.  
poster icon Poster MOPLO18 [3.399 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO18  
About • paper received ※ 27 August 2019       paper accepted ※ 25 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH02 Experience with Long-Pulse Operation of the PIP2IT Warm Front End rfq, operation, MEBT, kicker 803
 
  • A.V. Shemyakin, J.-P. Carneiro, A.Z. Chen, D. Frolov, B.M. Hanna, R. Neswold, L.R. Prost, G.W. Saewert, A. Saini, V.E. Scarpine, A. Warner, J.Y. Wu
    Fermilab, Batavia, Illinois, USA
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The warm front end of the PIP2IT accelerator, assembled and commissioned at Fermilab, consists of a 15 mA DC, 30 keV H ion source, a 2-m long Low Energy Beam Transport (LEBT) line, a 2.1-MeV, 162.5 MHz CW RFQ, followed by a 10-m long Medium Energy Beam Transport (MEBT) line. A part of the commissioning efforts involves operation in regimes where the average beam power in this front end emulates the operation of the proposed PIP-II accelerator, which will have a duty factor of 1.1% or above. The maximum achieved power is 5 kW (2.1 MeV x 5 mA x 25 ms x 20 Hz). This paper describes the difficulties encountered and some of the solutions that were implemented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH02  
About • paper received ※ 20 August 2019       paper accepted ※ 01 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)