Keyword: real-time
Paper Title Other Keywords Page
TUPOA38 Real-Time Magnetic Electron Energy Spectrometer for Use With Medical Linear Acceletors ion, electron, linac, detector 361
 
  • P.E. Maggi, H.R. Hogstrom, K.L. Matthews II
    LSU, Baton Rouge, USA
  • R.L. Carver
    Mary Bird Perkins Cancer Center, Our Lady of the Lake, Baton Rouge, USA
 
  Accelerator characterization and quality assurance is an integral part of electron linear accelerator (linac) use in a medical setting. The current clinical method for radia-tion metrology of electron beams (dose on central axis versus depth in water) only provides a surrogate for the underlying performance of the accelerator and does not provide direct information about the electron energy spectrum. We have developed an easy to use real-time magnetic electron energy spectrometer for characterizing the electron beams of medical linacs. Our spectrometer uses a 0.57 T permanent magnet block as the dispersive element and scintillating fibers coupled to a CCD camera as the position sensitive detector. The goal is to have a device capable of 0.12 MeV energy resolution (which corresponds to a range shift of 0.5 mm) with a minimum readout rate of 1 Hz, over an energy range of 5 to 25 MeV. This work describes the real-time spectrometer system, the detector response model, and the spectrum unfolding method. Measured energy spectra from multi-ple electron beams from an Elekta Infinity Linac are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA38  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA67 Helium Pressure Vessel Jacketing of the Fermilab SSR1 Single Spoke SC Cavities ion, cavity, feedback, cryomodule 418
 
  • E.C. Bonnema, E.K. Cunningham
    Meyer Tool & MFG, Oak Lawn, Illinois, USA
 
  Meyer Tool recently completed the welding of the liquid helium pressure vessel jackets around ten (10) superconducting single spoke niobium cavities for Fermilab. The SSR1 cavities are intended for use in the PIP-II Injector Experiment Cryomodule. Meyer Tool's scope of supply included review of the Fermilab Pressure Rating Analysis Document and the development of fabrication details and a fabrication sequence to meet that document's requirements, while minimizing the effects of jacketing cavity frequency, and the actual jacketing of the cavities. This paper will focus on the development of the fabrication details and sequence and how the details and sequence evolved over the course of welding and final machining of the ten (10) jackets. As the frequency of these cavities is critical the fabrication sequence accommodated numerous in process frequency checks, a frequency tuning step prior to the final weld, the use of thermal cameras to monitor weld heat input into the cavity, and post welding final machining of critical features. Lessons learned from this fabrication will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA67  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)