Author: Tian, Y.
Paper Title Page
MOA2IO02 The BNL EBPM Electronics, High Performance for Next Generation Storage Rings 1
 
  • K. Vetter
    ORNL, Oak Ridge, Tennessee, USA
  • W.X. Cheng, J. Mead, B. Podobedov, Y. Tian
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract DE-AC02-98CH10886
A custom state-of-the-art RF BPM (EBPM) has been developed and commissioned at the Brookhaven National Laboratory (BNL) National Synchrotron Light Source II (NSLS-II). A collaboration between Lawrence Berkeley National Laboratory (LBNL) Advanced Light Source (ALS) and BNL has proven to be a key element in the success of the NSLS-II EBPM. High stability coherent signal processing has allowed for demonstrated 200nm RMS spatial resolution and true turn-by-turn position measurement capability. Sub-micron 24 hr. stability has been demonstrated at NSLS-II by use of 0.01C RMS thermal regulation of the electronics racks without the need of active pilot tone correction.
 
slides icon Slides MOA2IO02 [4.334 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA2IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA71 Beam Stability During Top Off Operation at NSLS-II Storage Ring 425
 
  • W.X. Cheng, B. Bacha, Y. Li, O. Singh, Y. Tian
    BNL, Upton, Long Island, New York, USA
 
  NSLS-II storage ring started top off operation since Oct 2015. User operation current has been gradually increased to 250mA. Observations of beam stabilities during top-off operations will be presented. Total beam current was typically maintained within ±0.5% and bunch to bunch current variation was less than 20%. Injection transition during top-off was measured bunch by bunch digitizer, and BPM to analyze the orbit motion at various bandwidths (turn by turn, 10kHz and 10Hz rate). Coupled bunch unstable motions were monitored. As the vacuum pressure improves, fast-ion instability is not as severe compared to early stage of commissioning/operation, but still observed as the dominant instability. Resistive wall instability is noticed as more in-vacuum-undulator (IVU) gaps closed. xBPM measured photon stability and electron beam stability at top off injection have been evaluated. Short term and long term orbit stabilities will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA71  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB66 NSLS-II Post Mortem Function Development and Data Analysis of Beam Dump 1039
 
  • G.M. Wang, W.X. Cheng, J. Choi, L. Doom, K. Ha, T.V. Shaftan, R.M. Smith, J. Tagger, Y. Tian
    BNL, Upton, Long Island, New York, USA
  • R.V. Madelon
    University of Orleans, Orleans, France
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. The storage ring was commissioned in 2014 and transitioned to routine operations in the December of the same year. At this point the facility hosts 14 operating beam lines with beam current upto 250 mA. During beamline operation, various sources (protection system or subsystem malfunction) may cause beam dump. To identify the beam trip sources and improve the operation reliability, post mortem function was developed in NSLS-II to capture the sub-systems status and beam information prior and after beam dump, including RF system, power supply, BPMs and active interlock system. Most of the trip events have been identified and related source was improved. In this paper, we'll present the post mortem function and data application.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB66  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)