Author: Ruppe, J.M.
Paper Title Page
TUPOA41 FPGA Control of Coherent Pulse Stacking 367
SUPO52   use link to see paper's listing under its alternate paper code  
 
  • Y.L. Xu, J.M. Byrd, L.R. Doolittle, Q. Du, G. Huang, W. Leemans, R.B. Wilcox, Y. Yang
    LBNL, Berkeley, California, USA
  • J. Dawson
    LLNL, Livermore, California, USA
  • A. Galvanauskas, J.M. Ruppe
    University of Michigan, Ann Arbor, Michigan, USA
 
  Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. Due to advantages of precise timing and fast processing, we use an FPGA to process digital signals and do feedback control so as to realize stacking-cavity stabilization. We develop a hardware and firmware design platform to support the coherent pulse stacking application. A firmware bias control module stabilizes the amplitude modulator at the minimum of its transfer function. A cavity control module ensures that each optical cavity is kept at a certain individually-prescribed and stable round-trip phase with 2.5 deg rms phase error.  
poster icon Poster TUPOA41 [5.546 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA41  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA42 Multicavity Coherent Pulse Stacking Using Herriott Cells 370
 
  • Y. Yang, J.M. Byrd, L.R. Doolittle, G. Huang, W. Leemans, Q. Qiang, R.B. Wilcox
    LBNL, Berkeley, California, USA
  • J. Dawson
    LLNL, Livermore, California, USA
  • A. Galvanauskas, J.M. Ruppe
    University of Michigan, Ann Arbor, Michigan, USA
  • Y.L. Xu
    TUB, Beijing, People's Republic of China
 
  Coherent Pulse Stacking provides a promising way to generate a single high-intensity laser pulse by stacking a sequence of phase and amplitude modulated laser pulses using multiple optical cavities. Optical misalignment and phase stability are two critical issues that need to be addressed. Herriott cells are implemented for their relaxed alignment tolerance and a phase stabilization method based on cavity output pattern matching has been developed. A single pulse with intensity enhancement factor over 7.4 has been generated by stacking 13 modulated pules through a four-cavity stacking system. This can be a possible path for generating TW KHz laser pulses for a future laser-driven plasma accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)