Author: Palmer, M.A.
Paper Title Page
TUPOB06 Accomplishments of the Heavy Electron Particle Accelerator Program 489
 
  • D.V. Neuffer, D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings
    Muons, Inc, Illinois, USA
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
The Muon Accelerator Program has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using μ storage rings for neutrinos. The key components of the muon collider scenarios are a high-intensity proton source, a multi MW target and transport system for π capture, a front end system for bunching, energy compression and initial cooling of μ's, muon cooling systems to obtain intense μ+ and μ- bunches, acceleration up to multiTeV energies, and a collider ring with detectors for high luminosity collisions. For a neutrino factory a similar system could be used but with a racetrack storage ring for ν production and without the cooling needed for high luminosity collisions. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA24 Installation and Commissioning of an Ultrafast Electron Diffraction Facility as Part of the ATF-II Upgrade 742
 
  • M.A. Palmer, M. Babzien, M.G. Fedurin, C. Folz, M. Fulkerson, K. Kusche, J.J. Li, R. Malone, T.V. Shaftan, J. Skaritka, L. Snydstrup, C. Swinson, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was funded by the US Department of Energy under contract DE-SC0012704.
The Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) is presently carrying out an upgrade, ATF-II, which will provide significantly expanded experimental space and capabilities for its users. One of the new capabilities being integrated into the ATF-II program is an Ultrafast Electron Diffraction (UED) beam line, which was originally deployed in the BNL Source Development Laboratory. Inclusion of the UED in the ATF-II research portfolio will enable ongoing development and extension of the UED capabilities for use in materials research. We discuss the design, installation and commissioning of the UED beam line at ATF-II as well as plans for future upgrades.
 
poster icon Poster WEPOA24 [18.332 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THB2IO03 Fulfilling the Mission of Brookhaven ATF as DOE's Flagship User Facility in Accelerator Stewardship 1096
 
  • I. Pogorelsky, I. Ben-Zvi, M.A. Palmer
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE
25 years ago, Brookhaven Accelerator Test Facility (ATF), sponsored by the U.S. Department of Energy's (DOE's) Office of High-Energy Physics (HEP), pioneered a concept of a proposal-driven user facility for advanced accelerator research using lasers and electron beams. Since then, the ATF became an internationally recognized destination for researchers to benefit from free access to unique equipment not affordable otherwise to individual institutions and businesses. We will show by examples how collaborative user research achieves high productivity when supported by the ATF's capabilities. Researchers from academia, industry and national laboratories coming to ATF successfully investigate wide range of topics. Recently endorsed as an Office of Science National User Facility and a flagship in Accelerator Stewardship, ATF continues broadening its user community. DOE is now planning a considerable expansion of the ATF's capabilities via simultaneously upgrading the parameters of the e-beam and laser.
 
slides icon Slides THB2IO03 [49.425 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THB2IO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)