Author: Muller, E.M.
Paper Title Page
THPOA41 Simulations of Hole Injection in Diamond Detectors 1184
 
  • G.I. Bell, D.A. Dimitrov, C.D. Zhou
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, M. Gaowei, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • E.M. Muller
    SBU, Stony Brook, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, department of Basic Energy Sciences, under grant DE-SC0007577.
We present simulations of a semiconductor beam detector using the code VSIM. The 3D simulations involve the movement and scattering of electrons and holes in the semiconductor, voltages which may be applied to external contacts, and self-consistent electrostatic fields inside the device. Electrons may experience a Schottky barrier when attempting to move from the semiconductor into a metal contact. The strong field near the contact, due to trapped electrons, can result in hole injection into the semiconductor due to transmission of electrons from the valence band of the semiconductor into the metal contact. Injected holes are transported in the applied field leading to current through the detector. We compare our simulation results with experimental results from a prototype diamond X-ray detector.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA41  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)