Paper | Title | Page |
---|---|---|
TUPOA19 | 50-MeV Run of the IOTA/FAST Electron Accelerator | 326 |
|
||
Funding: Supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC. The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin-Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length. |
||
![]() |
Poster TUPOA19 [4.636 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA19 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA74 | The Design and Construction of a Resonance Control System for the IOTA RF Cavity | 432 |
SUPO57 | use link to see paper's listing under its alternate paper code | |
|
||
The IOTA ring will be an advanced storage ring used for non-linear beam dynamics experiments to assist in the construction of future accelerators. This ring is being built in conjunction with the FAST electron LINAC and the HINS RFQ proton source, at Fermilab, for injection into the ring. These accelerators will generate +150 MeV electron beams and 2.5 MeV proton beams respectively. As the beams are injected into the IOTA storage ring their longitudinal profile will begin to smear out and become more uniform. This will prevent detection of beam position with a Beam Position Monitoring system (BPM). To combat this a ferrite loaded bunching cavity is being constructed. This paper details the design and construction of an automatic resonance control system for this bunching cavity. | ||
![]() |
Poster TUPOA74 [2.604 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA74 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |