Author: Awida, M.H.
Paper Title Page
MOPOB16 Higher Order Modes Analysis of Fermilab's Recycler Cavity 106
 
  • M.H. Awida, J.E. Dey, T.N. Khabiboulline, V.A. Lebedev, R.L. Madrak
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
Two recycler cavities are being employed in Fermilab's Recycler Ring for the purpose of slip stacking proton bunches, where 6 batches of 8 GeV protons coming from the Booster are stacked on top of 6 circulating batches. Slip stacking requires two RF cavities operating at 52.809 and 51.545 MHz. In this paper, we report on the analysis of higher order modes in the Recycler cavity, presenting the values for R/Q and shunt impedances. Knowing the frequencies and properties of higher order modes is particularly critical for beam physics and avoidance of beam instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB27 Modification of 3rd Harmonic Cavity for CW Operation in LCLS-II Accelerator 960
 
  • T.N. Khabiboulline, M.H. Awida, I.V. Gonin, A. Lunin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  A 3.9 GHz 3rd harmonic cavity was developed at FNAL and it is currently used in the FLASH accelerator at DESY in order to improve FEL operation. The European XFEL accelerator in Hamburg also adapted the same cavity design for a pulsed linac operation. The 3rd harmonic cavity for the LCLS-II accelerator at SLAC will operate in a continuous wave (CW) regime. A CW operation and a high average current in the LCLS-II linac result in in-creased heat loads to main and HOM couplers of the cavity. Several cavity design modifications were pro-posed and investigated for improving a cavity perfor-mance in the CW regime. In this paper we present results of the design review for proposed modifications  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)