Paper | Title | Page |
---|---|---|
TUPYP045 | Usability Study to Qualify a Maintenance Robotic System for Large Scale Experimental Facility | 93 |
|
||
Funding: This work was supported by the National Natural Science Foundation of China (NSFC)[E0113T5C10],and the Institute for High Energy Physics University of Chinese Academy of Sciences. The primary stripper foil device is one of the most critical devices of The China Spallation Neutron Source Project Phase-II (CSNS-II), which requires regular foil replacement maintenance to ensure its stable operation. To mitigate the potential hazards posed to workers by prolonged exposure to high levels of radiation, a maintenance robotic system has been developed to perform repetitive and precise foil changing task. The proposed framework encompasses various aspects of the robotic system, including hardware structure, target detection, manipulator kinematics design, and system construction. The correctness and efficiency of the sys-tem are demonstrated through simulations carried out using ROS Moveit! and GAZEBO. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP045 | |
About • | Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 28 January 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPPP028 | Design and Analysis of CSNS-II Primary Stripper Foil | 319 |
|
||
Funding: National Natural Science Foundation of China, 11975253 Stripper foil is a key equipment for converting negative hydrogen ions into protons in the RCS injection zone of CSNS. The structure of the CSNS primary stripper foil adopts a rotating steel strip structure, and the replacement time of the foil is long, requiring operators to carry out maintenance work in close proximity for a long time. The energy of CSNS-II injection beam has significantly increased from 80MeV to 300MeV, and the radiation dose in the injection area will also increase, making it impossible to maintain the equipment in close proximity for a long time. Therefore, it is necessary to redesign the primary stripper foil. This article will analyze the stripper efficiency and beam injection thermodynamics of CSNS-II stripper foil, carry out automatic foil store replacement structure design, motion analysis, and prototype testing, and envision remote maintenance solutions to achieve maintenance and repair of the stripper foil with minimal human intervention. |
||
Poster THPPP028 [3.748 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP028 | |
About • | Received ※ 31 October 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 04 March 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |