Author: Pinty, V.
Paper Title Page
WEOBM01 Challenges and Solutions for the Mechanical Design of SOLEIL-II 133
 
  • K. Tavakoli, F. Alves, G. Baranton, Y. Benyakhlef, A. Berlioux, A. Carcy, M.-E. Couprie, J. Da Silva Castro, S. Ducourtieux, Z. Fan, C. Herbeaux, C.A. Kitégi, A. Le Jollec, F. Lepage, V. Leroux, A. Loulergue, F. Marteau, A. Mary, A. Nadji, S. Pautard, V. Pinty, M. Ribbens, T.S. Thoraud
    SOLEIL, Gif-sur-Yvette, France
 
  The Synchrotron SOLEIL is a large-scale research facility in France that provides synchrotron radiation from terahertz to hard X-rays for various scientific applications. To meet the evolving needs of the scientific community and to remain competitive with other European facilities, SOLEIL has planned an upgrade project called SOLEIL-II. The project aims to reconstruct the storage ring as a Diffraction Limited Storage Ring (DLSR) with a record low emittance which will enable nanometric resolution. The mechanical design of the upgrade project involves several challenges such as the integration of new magnets, vacuum chambers, insertion devices and beamlines in the existing infrastructure, the optimization of the alignment and stability of the components, and the minimization of the downtime during the transition from SOLEIL to SOLEIL-II. The mechanical design is mainly based on extensive simulations, prototyping and testing to ensure the feasibility, reliability, and performance of several key elements. This abstract presents an overview of the mechanical design concepts and solutions adopted for the SOLEIL-II project.  
slides icon Slides WEOBM01 [8.729 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEOBM01  
About • Received ※ 25 September 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 03 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)