Author: Lima, G.P.
Paper Title Page
TUPYP005 On the Performance of Cryogenic Cooling Systems for Optical Elements at Sirius/LNLS 40
 
  • B.A. Francisco, M.P. Calcanha, R.R. Geraldes, L.M. Kofukuda, G.P. Lima, M. Saveri Silva, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Sirius’ long beamlines are equipped with cryogenic cooled optics to take advantage of the Silicon thermal diffusivity and expansion at those temperatures, contributing to the preservation of the beam profile. A series of improvements was evaluated from the experience in the employment of such cooling systems during the early years of operation. The main topic refers to the prevention of instabilities in the temperature of the optics due to variations in the liquid nitrogen cylinder pressure, refill automation or progressive variations of the convective coefficient into the cryostat. This work discusses the performance of these systems after optimizing the pressure of the vessels and their control logics, the effectiveness of occasional purges, cool down techniques, and presents the monitoring interface and interlock architecture. Moreover, we present the reached solution for achieving higher beam stability, considering liquid nitrogen flow active control (commercial and in-house). Also propose the approach for the future 350 mA operation, including different cooling mechanisms.
 
poster icon Poster TUPYP005 [1.250 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP005  
About • Received ※ 24 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 22 November 2023 — Issued ※ 18 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)