Author: Lei, Z.
Paper Title Page
THPPP036 Prototype of High Stability Mechanical Support for SHINE Project 328
 
  • R. Deng, H.X. Deng, F. Gao, X. Huang, Z. Lei, T.T. Zhen
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Funding: CAS Project for Young Scientists in Basic Research (YSBR-042), National Natural Science Foundation of China (12125508, 11935020)¿Program of Shanghai Academic/Technology Research Leader (21XD1404100).
Quadru­pole sta­bil­ity of un­du­la­tor seg­ment is key to the beam per­for­mance in SHINE pro­ject. Vi­bra­tion sta­bil­ity re­quire­ment of quadru­pole is not larger than 200nm dis­place­ment RMS be­tween 1 and 100Hz, but the field test of SHINE tun­nel shows that the un­der­ground vi­bra­tion dur­ing the day time is greater than 200nm. In this paper, a me­chan­i­cal sup­port in­clud­ing mar­ble base and ac­tive vi­bra­tion re­duc­tion plat­form is so­phis­ti­cated de­signed. With this sup­port, vi­bra­tion sta­bil­ity of the key quadru­pole is ex­pected to be im­proved and the per­for­mances of the quadru­pole meet the de­mands.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP036  
About • Received ※ 25 October 2023 — Revised ※ 07 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPP037 A Micro-Vibration Active Control Method Based on Piezoelectric Ceramic Actuator 330
 
  • Z. Lei, H.X. Deng, R. Deng
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Funding: This work was supported by the CAS Project for Young Scientists in Basic Research (YSBR-042), the National Natural Science Foundation of China (12125508, 11935020)
In lin­ear ac­cel­er­a­tor, ground vi­bra­tion is trans­mit­ted to beam el­e­ment (quadru­pole mag­net, etc.) through sup­port, and then re­flected to the in­flu­ence of beam orbit or ef­fec­tive emit­tance. In order to re­duce the in­flu­ence of ground vi­bra­tion on beam orbit sta­bil­ity, an ac­tive vi­bra­tion iso­la­tion plat­form can be used. In this paper, an ac­tive vi­bra­tion iso­la­tion sys­tem is pro­posed, which re­al­izes the in­verse dy­namic process based on a nano-po­si­tion­ing plat­form and com­bines with a pro­por­tional con­troller to re­duce the trans­mis­sion of ground-based ex­ci­ta­tion to the beam el­e­ment. The ab­solute vi­bra­tion ve­loc­ity sig­nal ob­tained from the sen­sor is input to the con­troller as feed­for­ward sig­nal. The con­troller processes the input sig­nal and then the out­put sig­nal dri­ves the piezo­elec­tric ce­ramic ac­tu­a­tor to gen­er­ate dis­place­ment, re­al­iz­ing the ac­tive vi­bra­tion con­trol. The test re­sults of the pro­to­type show that the ac­tive vi­bra­tion iso­la­tion sys­tem can achieve 50% dis­place­ment at­ten­u­a­tion, which in­di­cates that the vi­bra­tion con­trol strat­egy has cer­tain en­gi­neer­ing ap­pli­ca­tion value in the con­struc­tion of large ac­cel­er­a­tors.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THPPP037  
About • Received ※ 25 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 07 November 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)