Title |
Thermal Contact Conductance in a Typical Silicon Crystal Assembly Found in Particle Accelerators |
Authors |
- P. Sanchez Navarro
DLS, Oxfordshire, United Kingdom
|
Abstract |
Every mirror at Diamond Light Source (the UK’s Particle Accelerator) has been installed with the premise of clamping the cooling copper manifolds as lightly as possible to minimize distortion. The problem with this approach is that the Thermal Contact Conductance (TCC) depends on the applied pressure among other factors*. The assembly is usually a symmetric stack of Copper - Indium Foil - Silicon Crystal - Indium Foil - Copper. Variables that interest the most are those that are easily adjustable in the set-up assembly (number of clamps, pressure applied and cooling water flow rate) PT100 temperature sensors have been used along the surface of the crystal and along the surface of the copper manifolds. Custom PCB units have been created for this project to act as a mean of collecting data and Matlab has been used to plot the temperature measurements vs. time. Another challenge is the creation of an accurate model in Ansys that matches reality up to a good compromise where the data that is being recorded from the sensors matches Ansys results within reason.
|
Footnotes & References |
*Gilmore DG. Spacecraft thermal control handbook. Volume I, Volume I, [Internet]. 2002. Available from: http://app.knovel.com/hotlink/toc/id:kpSTCHVFT2/spacecraft-thermal-control |
Paper |
download THOB01.PDF [2.874 MB / 4 pages] |
Slides |
download THOB01_TALK.PDF [11.322 MB] |
Export |
download ※ BibTeX
※ LaTeX
※ Text/Word
※ RIS
※ EndNote |
Conference |
MEDSI2020 |
Series |
Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (11th) |
Location |
Chicago, IL, USA |
Date |
24-29 July 2021 |
Publisher |
JACoW Publishing, Geneva, Switzerland |
Editorial Board |
Yifei Jaski (ANL, Lemont, IL, USA); Patric Den Hartog (ANL, Lemont, IL, USA); Kelly Jaje (ANL, Lemont, IL, USA); Volker R.W. Schaa (GSI, Darmstadt, Germany) |
Online ISBN |
978-3-95450-229-5 |
Online ISSN |
2673-5520 |
Received |
20 July 2021 |
Accepted |
13 October 2021 |
Issue Date |
06 November 2021 |
DOI |
doi:10.18429/JACoW-MEDSI2020-THOB01 |
Pages |
353-356 |
Copyright |
Published by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI. |
|