Author: Fonseca, P.T.
Paper Title Page
TUPH09 Friction Stir Welding and Copper-Chromium Zirconium: a New Concept for the Design of Sirius' High-Power Absorbers 39
 
  • G.V. Claudiano, P.T. Fonseca, L.M. Volpe
    LNLS, Campinas, Brazil
  • E.B. Fonseca, M. H. S. Silva
    LNNano, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, Innovation and Communication (MCTIC)
Sirius, the new Brazilian fourth-generation synchrotron light source, is currently under construction. Due to the high brilliance and low emittance of its source, the pho-ton beam on each undulator beamline can have power densities as high as 55 W/mrad². To protect the compo-nents downstream, the Front-End power absorbers need to manage this power in a limited space, but also having precision in alignment and being reliable all over their lifetime. To achieve this behaviour, the selected alloy was the copper-chromium-zirconium (CuCrZr, commercially known as C18150) because of improved thermal and mechanical properties. In order to seal the vacuum cham-ber (path on which the cooling water flows), friction stir welding was the selected joining method. During the welding process, the material passes through a grain re-finement process which results in a high-resistance joint. The manufacturing process could also result on a reduc-tion of costs and lead times. Finally, it will be presented the final versions of the component with its support and the characterizations done to validate the welded joint under vacuum and water pressure requirements.
 
poster icon Poster TUPH09 [2.987 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPH39 Validation Results for Sirius APU19 Front End Prototype 290
 
  • H.G.P. de Oliveira, L.C. Arruda, C.S.N.C. Bueno, H.F. Canova, P.T. Fonseca, G.L.M.P. Rodrigues, L. Sanfelici, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, Innovation and Communication (MCTIC)
A Front End (FE) prototype for a 19-mm period length Adjustable Phase Undulator (APU19) beamline of the new Brazilian 4th-generation synchrotron, Sirius, was assembled in the LNLS metrology building in January 2017 to validate main design concepts. Regarding stability, flow-induced vibration (FIV) investigations were carried out on the water-cooled components, and modal analyses were made on the X-Ray Beam Position Monitor (XBPM) support. As for the vacuum system, final pressure levels were investigated and a vacuum breach was intentionally provoked to verify the performance of the equipment protection system (EPS). In addition, cycling tests of the Photon and Gamma shutters were conducted to verify the FE reliability. Moreover, the three-layer protection system, developed to limit the maximum aperture for the high-power slits, was functionally evaluated. Finally, the results were used to improve the FE to its final design. This paper describes the tests setups and results obtained during the validations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH39  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)