Author: Zhao, Q.
Paper Title Page
MOPRC015 Development Status of FRIB On-line Model Based Beam Commissioning Application 100
 
  • Z.Q. He, M.A. Davidsaver, K. Fukushima, D.G. Maxwell, G. Shen, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: The work is supported by the U.S. National Science Foundation under Grant No. PHY-11-02511, and the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The new software FLAME has been developed to serve as physics model used for on-line beam commissioning applications. FLAME is specially designed to cover FRIB modeling challenges to balance between speed and precision. Several on-line beam commissioning applications have been prototyped based on FLAME and tested on the physics application prototyping environment. In this paper, components of the physics application prototyping environment are firstly described. Then, the design strategy and result of the four major applications: baseline generator, cavity tuning, orbit correction, transverse matching, are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP04 On the Acceleration of Rare Isotope Beams in the Reaccelerator (ReA3) at the National Superconducting Cyclotron Laboratory at MSU 390
TUPLR076   use link to see paper's listing under its alternate paper code  
 
  • A.C.C. Villari, G. Bollen, M. Ikegami, S.M. Lidia, S. Nash, R. Shane, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.B. Crisp, A. Lapierre, D.J. Morrissey, R. Rencsok, R.J. Ringle, S. Schwarz, C. Sumithrarachchi, T. Summers
    NSCL, East Lansing, Michigan, USA
 
  The ReAccelerator ReA3 is a worldwide unique, state-of-the-art linear accelerator for rare isotope beams. Beams of rare isotopes are produced and separated in-flight at the NSCL Coupled Cyclotron Facility and subsequently stopped in a linear gas cell. The rare isotopes are then continuously extracted as 1+ ions and transported into a beam cooler and buncher. Ion pulses provided by this device are then transported to a charge breeder based on an Electron Beam Ion Trap (EBIT) where they are captured in flight. The 1+ ions are ionized to a charge state suitable for acceleration in the superconducting radiofrequency (SRF) ReA3 linac, extracted in a pulsed mode and mass analyzed. The extracted beam is pre-bunched before injection into the RFQ and SRF linac, both operating at frequency of 80.5 MHz, and then accelerated to energies from 300 keV/u up to 6 MeV/u, depending on the charge-to-mass ratio of the ion. Stable isotopes can alternatively also be injected into the linac from the EBIT in off-line mode (by ionization of residual gas) or from external off-line ion sources. This contribution will focus on the methodology, properties and techniques used to accelerate and control low intensity rare isotope beams. Results obtained during the preparation of various experiments using the ReA facility, including those with the rare ions 46Ar and 37,46,47K will also be presented.  
slides icon Slides TUOP04 [1.979 MB]  
poster icon Poster TUOP04 [2.602 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)