Author: Olry, G.
Paper Title Page
WE1A03 The Superconducting Radio-Frequency Linear Accelerator Components for the European Spallation Source: First Test Results 651
 
  • C. Darve, N. Elias, F. Schlander
    ESS, Lund, Sweden
  • C. Arcambal, P. Bosland, E. Cenni, G. Devanz
    CEA/IRFU, Gif-sur-Yvette, France
  • S. Bousson, P. Duthil, G. Olivier, G. Olry, D. Reynet
    IPN, Orsay, France
  • G. Costanza
    Lund University, Lund, Sweden
  • H. Li, R.J.M.Y. Ruber, R. Santiago Kern
    Uppsala University, Uppsala, Sweden
  • F. Peauger
    CEA/DSM/IRFU, France
 
  The European Spallation Source requires a pulsed Linac with an average beam power on the target of 5MW which is about five times higher than the most powerful spallation source in operation today. Over 97% of the acceleration occurs in superconducting cavities. ESS will be the first accelerator to employ double spoke cavities to accelerate beam. Accelerating gradients of 9MV/meter is required in the spoke section. The spoke section will be followed by 36 elliptical 704 MHz cavities with a geometrical beta of 0.67 and elliptical 704 MHz cavities with a geometrical beta of 0.86. Accelerating gradients of 20MV/m is required in the elliptical section. Initial gradient test results will be presented in which results exceed expected requirements.  
slides icon Slides WE1A03 [6.533 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE1A03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR030 Performances of the Two First Single Spoke Prototypes for the MYRRHA Project 916
 
  • D. Longuevergne, J.-L. Biarrotte, S. Blivet, P. Duchesne, G. Olry, H. Saugnac
    IPN, Orsay, France
  • Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
 
  Funding: This work is being supported by the Euratom research and training program 2014-2018 under grant agreement N°662186 (MYRTE project)
The MYRRHA project aims at the construction of an accelerator driven system (ADS) at MOL (Belgium) for irradiation and transmutation experiment purposes. The facility will feature a superconducting LINAC able to produce a proton flux of 2.4 MW (600 MeV - 4 mA). The first section of the superconducting LINAC will be composed of 352 MHz (β = 0.37) Single Spoke Resonators (SSR) housed in short cryomodules operating at 2K. After a brief presentation of the cryomodule design, this paper will aim at presenting the RF performances of the SSR tested in vertical cryostat in the framework of European MYRTE project (MYRRHA Research and Transmutation Endeavour) and at comparing experimental results (Lorentz forces, pressure sensitivity, multipacting barriers…) to simulated values.
 
poster icon Poster THPLR030 [1.610 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)