Author: Lievin, Ch.L.
Paper Title Page
TUPLR048 Status and Lesson Learned from Manufacturing of FPC Couplers for the XFEL Program 572
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, G. Vignette
    TED, Thonon, France
  • A. Gallas, W. Kaabi
    LAL, Orsay, France
  • M. Knaak, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the XFEL accelerator, Thales, RI research Instrument and LAL are working on the manufacturing, assembly and conditioning of Fundamental power couplers. 670 couplers has been manufactured. The main characteristics of these couplers are remained at 1.3 GHz. The paper describes the full production activity from the starting of the program We describe the lesson learned from a mass production of FPC coupler and different steps necessaries for obtaining a rate up to 10 couplers a week. we propose also some other way to be optimized for a future possible mass production of such components. With comparison of processes and adaptation which could benefit to an increase rate, if needed, including some of them which could be studies from the coupler definition to the manufacturing process in order to obtain a stable and possible increased rate or lower cost of production by decreasing the risks on programs. The status of the production curve during the program is also given  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC006 Development of 704.4 MHz Power Coupler Window for Myrrha Project 776
 
  • F. Geslin, P. Blache, M. Chabot, J. Lesrel
    IPN, Orsay, France
  • Ch.L. Lievin, S. Sierra
    TED, Velizy-Villacoublay, France
 
  Myrrha is an accelerator driven system (ADS) hybrid research reactor designed for spent nuclear fuel burning. The linac controlling the reactor has to be highly reliable (low failure rate). In order to fulfill requirements of ADS projects like Myrrha, IPNO and Thales are involved in a power couplers research and development program. We develop a power coupler window, with MAX RF design, for 80 kW CW input power. During the study, we take account of fabrication and cost issues. We present in this paper the result of simulations needed to design this coupler window. The electromagnetic, thermal and thermo-mechanical simulations were performed with Ansys. The multipacting simulations were performed with Musicc3D, software developed by IPNO. The conditioning and test bench is also described as two prototypes have to be tested this autumn.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC007 Development of 352.2 Mhz Power Coupler Window for R&D Purposes 779
 
  • F. Geslin, M. Chabot, J. Lesrel, D. Reynet
    IPN, Orsay, France
  • Ch.L. Lievin, S. Sierra
    TED, Velizy-Villacoublay, France
 
  IPNO and Thales are conducting power couplers research and development. This paper present a new window design that fulfills European Spallation Source (ESS) requirements (400 kW RF peak power). The results of electromagnetic, thermal, thermo-mechanical, multipacting simulations and the consequences of the new ceramic window of power coupler will be reported. The multipacting simulations were performed with Musicc3D, software developed by IPNO. The new design overcome ceramic's weakness in tension and allows stronger constraints in the power coupler window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC008 Status of the Development and Manufacturing of LCLS-II Fundamental Power Couplers 782
 
  • S. Sierra, G. Garcin, Ch.L. Lievin, C. Ribaud, G. Vignette
    TED, Thonon, France
  • M. Knaak, A. Navitski, M. Pekeler, L. Zweibaeumer
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  For the LCLS-II project, Thales and RI research Instrument are working on the manufacturing and assembly of the Fundamental Power Couplers. The paper describes the production of the Fundamental Power Couplers for the LCLS-II project. The main characteristics of these couplers are remained at 1.3 GHz. It describes the main challenges to be overcome principally on the Warm Internal conductor, with a thickness of copper of 150μm. The results obtained on this coating We describe the results obtained on the prototype phase and the status of the serial production on the date of the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)