Author: Knobloch, J.
Paper Title Page
TUPRC015 Final Acceptance Test of SRF Photo-Injector Cold String for the BERLinPro Energy Recovery Linac 445
 
  • A. Neumann, D. Böhlick, P. Echevarria, A. Frahm, F. Göbel, T. Kamps, J. Knobloch, O. Kugeler, M. Schuster, J. Ullrich, A. Ushakov
    HZB, Berlin, Germany
  • A. Burrill
    SLAC, Menlo Park, California, USA
  • G. Ciovati, P. Kneisel
    JLab, Newport News, Virginia, USA
  • A. Matheisen, M. Schalwat, M. Schmökel
    DESY, Hamburg, Germany
  • E.N. Zaplatin
    FZJ, Jülich, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association.
Helmholtz-Zentrum Berlin (HZB) is currently designing and building an high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm·mrad at 100mA and short pulses of about 2 ps. In order to achieve these demanding goals HZB started a staged program for developing this class of required high current, high brightness SRF electron sources. In this contribution we will present the current status of the module assembly and testing of the prototype SRF photo-injector cavity cold string. The steps taken to install the cathode insert system with the cavity in the cleanroom and the following horizontal test of the cold string as final acceptance test prior installation into its cryostat are shown. First beam in a dedicated diagnostics teststand called Gunlab are planned for this winter.
 
poster icon Poster TUPRC015 [2.077 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP03 Cold Bead-Pull Test Stand for SRF Cavities 748
THPRC004   use link to see paper's listing under its alternate paper code  
 
  • A.V. Vélez, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
 
  Bead-pull measurements represent a final step in the fabrication process of an SRF cavity. These tests allow to characterize the flatness of the field profile in order to perform mechanical tuning if needed. These test has been always performed at room temperature, where material properties differ from the superconducting state properties. Still questions like mechanical deformation due to assymetrical thermal shrincage have not yet been answered experimentaly. In this paper, an upgrade of the former Cold-Bead pull system developed by HZB [1] is presented. This test stand is capable of holding a 9-cell Tesla cavity at LHe temperature providing a realistic insight to cavity parameters under realistic conditions. A copper test pill-box is placed in series with the multi-cell cavity in order to perform 1.8K calibration of the bead. Results will be presented on this paper and compared to electromagnetic simulations.  
slides icon Slides THOP03 [2.731 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)