Author: Gillespie, G.H.
Paper Title Page
MOPRC009 Simulating Apertures in the Uniform Equivalent Beam Model 87
 
  • G.H. Gillespie
    G.H. Gillespie Associates, Inc., Del Mar, California, USA
 
  The uniform equivalent beam model is useful for simulating particle beam envelopes. Beam root-mean-square (rms) sizes, divergences, and emittances of an equivalent uniform beam approximate well the rms properties of more realistic beam distributions, even in the presence of space charge. Envelope simulation codes for high current beams using the model, such as TRACE 3-D, are central to particle optics design. However, the modeling of apertures has required multi-particle simulation codes. Multi-particle codes do not typically have the fitting and optimization capabilities common to envelope codes, so the evaluation of aperture effects is often a secondary study that may result in further design iteration. To incorporate aperture effects into the optics design at the start, a method has been developed for simulating apertures in the context of a uniform equivalent beam. The method is described and its TRACE 3-D implementation is outlined. Comparisons with multi-particle simulations are used to validate the method and examine regions of applicability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)