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Abstract 

The uniform equivalent beam model is useful for 

simulating particle beam envelopes. Beam root-mean-

square (rms) sizes, divergences, and emittances of an 
equivalent uniform beam approximate well the rms 

properties of more realistic beam distributions, even in the 

presence of space charge. Envelope simulation codes for 

high current beams using the model, such as TRACE 3-D, 
are central to particle optics design. However, the 

modeling of apertures has required multi-particle 
simulation codes. Multi-particle codes do not typically 

have the fitting and optimization capabilities common to 
envelope codes, so the evaluation of aperture effects is 
often a secondary study that may result in further design 
iteration. To incorporate aperture effects into the optics 
design at the start, a method has been developed for 
simulating apertures in the context of a uniform equivalent 
beam. The method is described and its TRACE 3-D 
implementation is outlined. Comparisons with multi-
particle simulations are used to validate the method and 
examine regions of applicability.  

INTRODUCTION 

The uniform equivalent beam ("UEB") model [1] 

provides a useful approximation for simulating particle 

beam envelopes in transfer lines and accelerator 

structures. Beam dynamics design often begins with the 

use of an envelope simulation that utilizes the UEB such 

as TRACE 3-D [2].  To help incorporate apertures into 

the initial optics design, a method has been developed for 

simulating apertures within the context of the UEB model. 

This paper outlines the method and its implementation in 

TRACE 3-D. Comparisons with multi-particle simulation 

codes, with and without space charge, are used to validate 

the method and examine potential regions of applicability.  

It is convenient to examine three cases of a beam 

passing through an aperture, as illustrated in Fig. 1.  
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Figure 1: Three cases of beams intercepting an aperture. 

The apertures are drawn red while the beams are in blue.   

   

Figure 1 shows an elliptical aperture (red) with a 

vertical (y) to horizontal (x) aspect ratio of 2. Three beam 

cases are illustrated by blue ellipses.  Case (a) 

corresponds to the situation where the beam cross section 

(i.e. y-x plane) is entirely within the aperture.  Case (c) is 

the situation where the beam covers the aperture, so that 

the beam cross section is effectively replaced by the 

aperture cross section.  Case (b) illustrates the situation 

where a part of the beam passes through the aperture 

ellipse, but a portion of the beam is intercepted and lost. 

In the context of the equivalent uniform beam, the 

spatial particle density is described by an uniformly filled 

ellipsoid of three dimensions (3-D) for bunched beams, or 

of two dimensions (2-D) for continuous beams.  The 

Kapchinsky-Vladimirsky [3], or KV, beam is a useful 

model for continuous beams.  The approach to modeling 

apertures is to determine suitable equivalent uniform 

beams that approximate the beams which survive after 

encountering the aperture.       

APERTURE METHOD 

Transmission Factor Tf 

The normalized two-dimensional distribution function, 

f(x,y), for a beam uniformly distributed within an ellipse, 

can be represented in terms of the Heaviside step function 

Θ by: 

 f(x,y) =  Θ[A - B (x/xb)(y/yb) - (x/xb)
2 
- (y/yb)

2
]  , (1) 

where A = (1-rxy
2
)   ,   (2) 

and B = 2rxy   . (3) 

 

The beam ellipse parameters xb and yb are the maximum 

extents of the ellipse in the horizontal and vertical 

directions, respectively, and are given by the square roots 

of the beam sigma matrix elements σ11 and σ33, 

respectively.  Note that these are not the semi-axes 

parameters for the ellipse
1
. The parameter rxy is the x-y 

correlation of the beam: rxy =  r13 = σ13/(xbyb).    

 The aperture transmission function, T(x,y), can 

similarly be represented by the Heaviside function as: 

 

 T(x,y) =  Θ[1 - (x/xa)
2 
- (y/ya)

2
]    , (4) 

                                                           
1
 If the semi-axes parameters of the beam ellipse are a and 

b, then rxy is related to the rotation angle, θ, by: 

  rxy = - αxy / (1+ αxy
2
)

1/2
   ,  

 where αxy = - (b
2
-a

2
) sin(2θ)/(2ab)   .  

 The beam ellipse parameters xb and yb are given by:  

    xb = 2
1/2

ab / [(b
2
+a

2
) + (b

2
-a

2
) cos(2θ)]

1/2
   ,  

   yb = 21/2ab / [(b2+a2) - (b2-a2) cos(2θ)]1/2   . 
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where xa and ya  are the aperture ellipse semi-axes in the 

horizontal and vertical directions respectively.  Letting 

g(x,y) denote the beam distribution after the aperture, then 

 

 g(x,y)  =  T(x,y) f(x,y)    . (5) 

 

Case (a) simply gives g(x,y) = f(x,y), while case (c) 

results in g(x,y)  = T(x,y).  For case (b) g(x,y) is again a 

Heaviside step function, but the argument is a more 

complicated function of four segments from the inner 

most boundaries of the beam and aperture ellipses. 

In case (b) the beam and aperture ellipses intersect at 

four points.  The coordinates (xi, yi) for the intersection 

points are found by equating the arguments of (1) and (4). 

The result can be written as a quadratic equation for the 

square of one of the intersection coordinates.  Selecting to 

solve for y
2
 yields: 

 

 ay
4
 + by

2
 + c = 0  ,  (6) 

where:  

 a = [(xb
2
ya

2
-xa

2
yb

2
)

2
+4rxy

2
(xbyaxayb)

2
]/(ya

4
xb

4
yb

4
)  , (7) 

 b = 2{(xb
2
ya

2
-xa

2
yb

2
)( xa

2
yb

2
-xb

2
yb

2
) + 

   rxy
2
[(xb

2
ya

2
-xa

2
yb

2
)xb

2
yb

2
.-2xb

2
ya

2
xa

2
yb

2
]}/(ya

2
xb

4
yb

4
) , (8) 

and  c = [(xa
2
-xb

2
) + rxy

2
xb

2
]

2
/(yb

4
)    . (9) 

 

There are four solutions to equation (6) for the 

intersection coordinate yi, each with a corresponding xi 

coordinate.  The coordinate pairs (xi, yi) for the 

intersection points in this work are labeled with i 

increasing from 1 to 4 in a counterclockwise sense from 

the first quadrant, with x1 corresponding to the largest 

positive value.  Thus pairs (x1, y1)  and (x4, y4) are located 

in the upper half plane (yi>0) while (x2, y2) and (x3, y3) are 

located in the lower half plane (yi<0). 

 Each segment defining the interior of the beam capture 

region in Fig. 1(b) is part of an ellipse.  The beam 

transmission fraction, Tf, given by the integral over g(x,y) 

of equation (5) divided by the beam area, can be 

computed analytically, with the results expressed in terms 

of arcsin and algebraic functions of the four intersection 

coordinates xi.  Only the contribution for y>0 need be 

computed as the contribution for y<0 will be the same.   

For the example in Fig. 1(b), where xb>xa, Tf is:  

   

  Tf = (πFxy)
-1

 { [(π/2)+arcsin(Ra4)+Ra4Fa4] 

      + Fxy [arcsin(Rb1)+Rb1Fb1-arcsin(Rb4)+Rb4Fb4] 

      + rxy[Rb1
2
-Rb4

2
] + [(π/2)-arcsin(Ra1) -Ra1Fa1] }  , (10) 

where:  

 Ra1 = x1/xa  ,  Ra4 = x4/xa  ,  Rb1 = x1/xb  ,  Rb4 = x4/xb   , 

 Fa1 = (1-Ra1
2
)

1/2
 ,  Fa4 = (1-Ra4

2
)

1/2
   , 

 Fb1 = (1-Rb1
2
)

1/2
 ,  Fb4 = (1-Rb4

2
)

1/2
   , (11) 

and Fxy = (1-rxy
2
)

1/2
   . (12) 

 

The first and last terms in square brackets in equation 

(10) correspond to the left-most and right-most region 

between (-xa , x4) and (x1 , xa), respectively.  The two 

middle terms in the square brackets of equation (10) 

correspond to the region of (x4 , x1).  For the situation with 

xb<xa, Tf can also be expressed analytically but is not 

shown due to space limits. 

The transmission factor is used to compute the beam 

current after the aperture, Iafter = Tf Ibefore, where Ibefore is the 

beam current incident on the aperture.  

Beam Ellipsoid (σ-matrix) Parameters  

The beam ellipsoid parameters following the aperture 

are determined by the second moments, including 

correlated moments, of the distribution function g(x,y).  

For case (a) the beam parameters are simply those of the 

initial beam.  For case (b) the beam spatial parameters are 

determined by the aperture parameters.  For case (c) the 

second moments can be computed following the same 

procedure as used to compute the transmission factor, 

with the integrals involved appropriately weighted with 

the x
2
, xy, or y

2
, as well as x or y for the phase space 

correlation elements.  That procedure gives well-defined 

second moments, but may not represent the best UEB 

beam.  A simpler procedure for case (c) has been used 

where the values for each second moment are determined 

by the smaller of the values for the initial beam or the 

aperture itself.  For example, the values after the aperture 

of the σ-matrix parameters in the x-x' phase space are: 

 

 σ11 =  Fx
2
 xb

2
    , (13) 

 σ12 =  Fx r12 xbx'b    , (14) 

 σ22 = x'b
2
    , (15) 

 

where x'b and r12  are beam divergence and x-x' correlation 

parameters before the aperture, and the scale factor Fx is: 

 

 Fx = 1    if    xb  <  xa  ,   and  

 Fx = xa / xb    if    xb  >  xa    . (16)

  

Model Comparison with Numerical Simulations  

The aperture method described has been added to the 

TRACE 3-D code available as a Module to the PBO Lab 

software [4].  MARYLIE [5] has been used for multii-

particle simulations of apertures.  MARYLIE has a good 

KV beam distributions algorithm and is also available as a 

PBO Lab Module [6], making comparisons easy.  

 

Table 1 summarizes selected Tf results using the 

TRACE 3-D aperture method and compares them to 

MARYLIE calculations. The examples are for a 2 MeV 

proton beam (mass 938.28 MeV) and an aperture with 

xa=1 mm and  ya=3 mm.  The initial beam is 

parameterized in terms of starting values of the semi-axes 

for the beam cross section, a and b, together with a roll 

angle, θ. The values of a and b used are 3 mm and 2 mm, 

respectively, and the roll angle θ is varied to cover a 

variety of the conditions for case (b) of Fig. 1.  The results 
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show that the analytic results for Tf have been correctly 

programmed in the TRACE 3-D Module software.  The 

differences between the MARYLIE simulations and the 

analytic (TRACE 3-D) model are around 1% (for 10,000 

particles), and of the same order as the differences 

between +θ and -θ MARYLIE simulations. 

 

Table 1. Selected transmission factor (Tf) results for the  

PBO Lab TRACE 3-D Module aperture model (T3D) 

with comparisons to MARYLIE 10,000 particle 

simulations (MARY).  The Diff column shows the percent 

difference of the Tf (MARY) results from the Tf (T3D) 

model, while the last column shows the percent difference 

observed with MARYLIE for ±θ values. 

 

θ (deg) Tf (T3D) Tf (MARY) Diff (%) Diff(MARY) 
 0 0.3870352 0.3842 -0.73 - 

 10 0.3895167  0.3856 -1.01 -0.39 
 20 0.3969442    0.3923   -1.17 -1.11 
 40 0.4259730    0.4207 -1.24 -2.09 
 60 0.4678598  0.4649 -0.63 -1.94 

 80 0.4978750  0.5036  1.15   0.04 
 90 0.5000000  0.5043  0.86   0.00 

  

1.000 

 

 (B) PARMILA-2 Tf using apertures in fit 

 

 

 

 

 TRACE 3-D Tf  

0.875 

 

 (A) PARMILA-2 Tf without apertures in fit 

 

  Tf 

 

 

 

0.750 

 0.0 I (mA) 75 150 

 

Figure 2: Transmission factors (Tf) for the Example B 

beamline from PARMILA-2 when (A) the quadrupoles 

are fit ignoring apertures (red) and (B) using the aperture 

method (blue), as a function of current.  The black curve 

shows the Tf aperture method estimate from TRACE 3-D.   

 

A typical transfer line problem was used to explore the 

utility of using TRACE 3-D with the aperture method.  

The Example B transfer line problem from the TRACE 3-

D documentation [2] is representative and has been 

studied in detail previously.  The Example B - Modified 

version [7] uses 4 quadrupoles to transport a beam, with 

given initial Twiss parameters, to a match point 

downstream, where the quadrupole strengths are varied to 

achieve different Twiss parameters at the match point.  

One cm (radius) apertures were added at the middle of 

each of the 4 "matching" quadrupoles, as well as at the 

match point, which is in the middle of a 5th quadrupole.  

TRACE 3-D was used to find the 4 required quadrupole 

strengths either (A) ignoring the apertures, or (B) 

including apertures.  The "matched" quadruple strengths 

were determined for currents I between 0 and 150 mA.   

 

Once the matched quadruples are set by TRACE 3-D, 

the PARMILA-2 program [8,9] was used for multi-

particle simulations (10,000 particles) with space charge 

through the transfer lines for (A) and (B). Fig. 2 

summarizes the total transmission factor (Tf) results.  The 

data displayed in Fig. 2 show that if the aperture method is 

included, when using TRACE 3-D to find the matched 

quadrupole strengths, that PARMILA-2 predicts higher 

transmission through the line (B), than if the strengths 

were fit ignoring the apertures (A).  The TRACE 3-D 

calculations with the aperture method appear to give a 

reasonable estimate of the PARMILA-2 transmission, 

even though that beam is not a UEB distribution. 

SUMMARY 

A method for modeling apertures within the context of 

the uniform equivalent beam (UEB) model has been 

derived.  The method was added to the PBO Lab TRACE 

3-D Module.  Comparisons to multi-particle simulations 

are used to validate the method, and to indicate that the 

method may have utility in beamline design.   
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