Paper | Title | Page |
---|---|---|
TUPLR030 | First FRIB β=0.53 Prototype Coldmasss Build | 538 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661, the State of Michigan and Michigan State University. The β=0.53 coldmass consists of eight Superconducting Radio Frequency (SRF) β=0.53 cavities, eight Fundamental mode Power Couplers (FPC), and one 8 T solenoid. This is the first coldmass with this version of cavity and it has brought new challenges to overcome. The Facility for Rare Isotope Beams (FRIB) contains 18 cryomodules with β=0.53 cavity coldmasses, and this type of coldmass is the highest power and most produced ones in FRIB. During the final cleaning stage and the cavity assembly, particle detection equipment is used to verify the cavity cleanliness levels for cavity certification test and for coldmass assembly. This method allows for cleanliness detection of specific areas inside the cavity at any time a vacuum flange is off. The fixtures, techniques and procedures used to build the β=0.53 coldmasses will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR030 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLR033 | First FRIB β=0.041 Production Coldmass Build | 541 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661, the State of Michigan and Michigan State University. Three β=0.041 cryomodules are required for the Facility for Rare Isotope Beams (FRIB) accelerator. Cleanroom assembly of all three coldmasses for these cryomodules has been completed. The cleanroom assembly includes; the superconducting radio frequency (SRF) cavities, the superconducting solenoids, fundamental power couplers (FPC), beam position monitors, alignment rail, and transport cart. This paper will provide an overview of the techniques and procedures used to assemble this cavity string such that it can be used in the FRIB accelerator. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR033 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WE2A02 | FRIB Cryomodule Design and Production | 673 |
|
||
Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB), under con-struction at Michigan State University, will utilize a driver linac to accelerate stable ion beams from protons to ura-nium up to energies of >200 MeV per nucleon with a beam power of up to 400 kW. Superconducting technology is widely used in the FRIB project, including the ion sources, linac, and experiment facilities. The FRIB linac consists of 48 cryomodules containing a total of 332 superconducting radio-frequency (SRF) resonators and 69 superconducting solenoids. We report on the design and the construction of FRIB cryomodules. |
||
![]() |
Slides WE2A02 [3.823 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE2A02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |