Author: Doebert, S.     [Döbert, S.]
Paper Title Page
TUPRC016 S-Band Booster Design and Emittance Preservation for the Awake e-Injector 449
 
  • O. Mete Apsimon, R. Apsimon, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Döbert
    CERN, Geneva, Switzerland
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  AWAKE is a proton driven plasma wakefield acceleration experiment at CERN which uses the protons from the SPS. It aims to study the self modulation instability of a proton bunch and the acceleration of an externally injected electron beam in the plasma wakefields, during the so called Phase II until the technical stop of LHC and its injector chain (LS2) in 2019. The external electron beam of 0.1 to 1nC charge per bunch will be generated using an S-band photo injector with a high QE semiconducting cathode. A booster linac was designed to allow variable electron energy for the plasma experiments from 16 to 20 MeV. For an RF gun and booster system, emittance control can be highlighted as a challenging transmission task. Once the beam emittance is compensated at the gun exit and the beam is delivered to the booster with an optimum beam envelope, fringing fields and imperfections in the linac become critical for preserving the injection emittance. This paper summarises the rf design studies in order to preserve the initial beam emittance at the entrance of the linac and alternative mitigation schemes in case of emittance growth.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP11 Ultra-Short Bunch Electron Injector for Awake 770
THPLR071   use link to see paper's listing under its alternate paper code  
 
  • S. Döbert
    CERN, Geneva, Switzerland
 
  The proton driven plasma wake field acceleration experiment AWAKE at CERN will start at the end of this year. In 2017 an S-band electron injector producing bunches of a few ps length will be added to probe the wake fields stimulated by a driving proton beam. In the future this electron injector will have to be upgraded to obtain electron bunches with a length of 100 - 200 fs in order to demonstrate injection into a single bucket of the plasma wave and therefore sustainable acceleration with low energy spread. Target bunch parameters for the study are a bunch charge of 100 pC, 100 fs bunch length, an emittance smaller than 2 mm mrad and a beam energy of 100 MeV. The status of a study to achieve these parameters using X-band accelerator hardware and velocity bunching will be presented.  
slides icon Slides THOP11 [2.733 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR013 LEETCHI: The High Current Electron Source for the CLIC Drive Beam Injector 870
 
  • K. Pepitone, S. Döbert
    CERN, Geneva, Switzerland
  • B. Cadilhon, B. Cassany, J. Gardelle
    CEA, LE BARP cedex, France
 
  LEETCHI is a source which will produce 140 keV, 5 A, 140 μs electron beams at a repetition rate of 50 Hz. The shot to shot and flat top current stability of this drive beam injector for CLIC has to be better than 0.1% and a geometrical emittance of 14 mm mrad is expected. The development of a high voltage modulator, to achieve those requirements, is ongoing. A small test stand has been built which allows to diagnose and dump the beam produced by the thermionic cathode. The thermionic cathode is equipped with a grid which will allow us to control the current and eventually to have a feedback on the flattop shape. The beam dump, made of graphite, has been designed using two different codes, the Monte Carlo code GEANT4 to simulate the energy deposition and ANSYS used to simulate the thermal resistance of the graphite due to the long pulse duration. The geometry has been optimized with the ray tracing code EGUN and the 2D PIC-code MAGIC. All these simulations allowed us to optimize the geometry of the gun and to develop diagnostics which must survive to the heat deposition. Finally, the first electrical measurements of the beam will be presented.  
poster icon Poster THPLR013 [19.847 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)