Author: Dobbins, J.
Paper Title Page
TUOP02 CBETA: The Cornell/BNL 4-Turn ERL with FFAG Return Arcs for eRHIC Prototyping 384
TUPLR002   use link to see paper's listing under its alternate paper code  
 
  • G.H. Hoffstaetter, J. Barley, A.C. Bartnik, I.V. Bazarov, J. Dobbins, B.M. Dunham, R.G. Eichhorn, R.E. Gallagher, C.M. Gulliford, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, D.M. Sabol, E.N. Smith, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I. Ben-Zvi, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
 
  Cornell University has prototyped technology essential for any high brightness electron ERL. This includes a DC gun and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current CW cryomodule, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams, e.g. slid measurements for 6-D phase-space densities, a fast wire scanner for beam profiles, and beam loos diagnostics. All these are now available to equip a one-cryomodule ERL, and laboratory space has been cleared out and is radiation shielded to install this ERL at Cornell. BNL has designed a multi-turn ERL for eRHIC, where beam is transported more than 20 times around the RHIC tunnel. The number of transport lines is minimized by using two non-scaling (NS) FFAG arcs. A collaboration between BNL and Cornell has been formed to investigate the new NS-FFAG optics and the multi-turn eRHIC ERL design by building a 4-turn, one-cryomodule ERL at Cornell. It has a NS-FFAG return loop built with permanent magnets and is meant to accelerate 40mA beam to 200MeV.  
slides icon Slides TUOP02 [7.848 MB]  
poster icon Poster TUOP02 [13.981 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR010 Measurements and Analysis of Cavity Microphonics and Frequency Control in the Cornell ERL Main Linac Prototype Cryomodule 488
 
  • M. Ge, N. Banerjee, J. Dobbins, R.G. Eichhorn, F. Furuta, G.H. Hoffstaetter, M. Liepe, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The Cornell Main Linac cryomodule (MLC) is a key component in the CBETA project. The SRF cavities with high loaded-Q in the MLC are very sensitive to microphonics from mechanical vibrations. Poor frequency stability of the cavities would dramatically increase the input RF power required to maintain stable accelerating fields in the SRF cavities. In this paper, we present detailed results from microphonics measurement for the cavities in the MLC, discuss dominant vibration sources, and show vibration damping results. The current microphonics level meets the CBETA requirement of a 36MeV energy gain without applying fast tuner compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR011 Performance of the Novel Cornell ERL Main Linac Prototype Cryomodule 492
 
  • F. Furuta, J. Dobbins, R.G. Eichhorn, M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The main linac cryomodule (MLC) for the future energy-recovery linac (ERL) based X-ray light source at Cornell has been designed, fabricated, and tested. It houses six 7-cell SRF cavities with individual higher order-modes (HOMs) absorbers, cavity frequency tuners, and one magnet/BPM section. Cavities have achieved the specification values of 16.2MV/m with high-Q of 2.0·1010 in 1.8K in continuous wave (CW) mode. During initial MLC cavity testing, we encountered some field emission, reducing Q and lowering quench field. To overcome field emission and find optimal cool-down parameters, RF processing and thermal cycles with different cool-down conditions has been done. Here we report on these studies and present final results from the MLC cavity performance.  
poster icon Poster TUPLR011 [2.389 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A04 Ion Effects in High Brightness Electron Linac Beams 1032
SPWR030   use link to see paper's listing under its alternate paper code  
 
  • S.J. Full, A.C. Bartnik, I.V. Bazarov, J. Dobbins, B.M. Dunham, G.H. Hoffstaetter, K. J. Smith
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Electron beams ionize rest gas particles which then accumulate around them, disturbing beam dynamics and causing background radiation. While this effect has been predicted in the past, linacs have hitherto not suffered from it because of their rather small beam current. The effect of ions increases with larger currents and smaller cross sections of the beam, and it has clearly been observed in Cornell's high-brightness ERL injector for the first time. This presentation will show experimental evidence for ions, demonstrate strategies for their elimination, and will compare the experimental data to theories of beam-ion interactions.  
slides icon Slides FR1A04 [5.995 MB]  
poster icon Poster FR1A04 [2.630 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-FR1A04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)