Author: Cho, Y.-S.
Paper Title Page
MOPLR061 Commissioning of the RI Production Beam Line of KOMAC 271
 
  • H.-J. Kwon, Y.-S. Cho, H.S. Kim, Y.G. Song, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
A radioisotope (RI) production beam line has been developed at Korea Multi-purpose Accelerator Complex (KOMAC) in 2015 and the commissioning started in 2016. The beam parameters of the beam line are 100-MeV beam energy with a maximum 30 kW beam power, which is driven by KOMAC 100-MeV proton linac. The main components of the beam line are a beam transport system, a target transport system, a cooling system for target and hot cell. KOMAC has a plan to commission the beam line and get an operational license in 2016 and start user service in 2017. In this paper, the development and initial commissioning results of the RI production beam line are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A02 Operation of KOMAC 100 MeV Linac 683
 
  • H.S. Kim
    KAERI, Daejon, Republic of Korea
  • Y.-S. Cho, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
A 100-MeV proton linear accelerator at the KOMAC (Korea Multi-purpose Accelerator Complex) was under development for past 15 years, including preliminary design study period, and was successfully commissioned in 2013. The operation of the linac for user service started in July 2013 with two beam lines: one for a 20-MeV beam and the other for a 100-MeV beam. The linac is composed of a 50-keV microwave proton source, a 3-MeV four-vane-type RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). In 2015, the linac operating time was more than 2,800 hours with an availability of better than 89% and unscheduled downtime was about 73 hours, mainly due to the ion source and HVCM problems. More than 2,100 samples from various fields such as material science, bio and nano technology and nuclear science, were treated in 2015. Currently, additional beamline for radioisotope production is being commissioned and a new beamline for low-flux irradiation experiments are under construction along with a continuous effort being made to increase the average beam power.
 
slides icon Slides TH1A02 [18.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)