Author: Baartman, R.A.
Paper Title Page
MO2A03 Commissioning and Early Operation of the ARIEL e-Linac 12
 
  • T. Planche, M. Alcorta, F. Ames, R.A. Baartman, C.B. Barquest, B. Humphries, D. Kaltchev, S.R. Koscielniak, R.E. Laxdal, Y. Ma, M. Marchetto, S. Saminathan, E. Thoeng
    TRIUMF, Vancouver, Canada
  • P. Jung
    UW/Physics, Waterloo, Ontario, Canada
 
  The ARIEL electron linac has been added to the TRIUMF facility as a new driver for the production of radioactive isotopes through photo-fission to complement the existing 500 MeV, H- TRIUMF cyclotron. The electron beam driver is specified as a 50 MeV, 10 mA cw superconducting electron linac at 1.3 GHz. The first 30 MeV stage of the e-linac consisting of two cryomodules is completed. The paper will describe the recent commissioning and early operation results.  
slides icon Slides MO2A03 [25.277 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MO2A03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR023 The ARIEL Radioactive Ion Beam Transport System 891
 
  • M. Marchetto, T.J. Alderson, F. Ames, R.A. Baartman, J.D. Chak, P.E. Dirksen, T.G. Emmens, G.W. Hodgson, T. Hruskovec, M. Ilagan, R.E. Laxdal, N. Muller, D. Preddy, D. Rowbotham, S. Saminathan, Q. Temmel, V.A. Verzilov, D. Yosifov
    TRIUMF, Vancouver, Canada
 
  The Advanced Rare IsotopE Laboratory (ARIEL) is going to triple the radioactive ion beam (RIB) production at TRIUMF. The facility will enable multi-user capability in the Isotope Separation and ACceleration (ISAC) facility by delivering three RIBs simultaneously. Two new independent target stations will generate RIBs using a proton driver beam up to 50 kW from the 500 MeV cyclotron and an electron driver beam for photo-fission from the new superconducting e-linac in addition to the existing ISAC RIB production. The multi-user capability is enabled by a complex radioactive ion beam transport switchyard consisting entirely of electrostatic optics. This system includes two separation stages at medium and high resolution with the latter achieved by a mass separator designed for an operational resolving power of 20000 for a 3 micrometer transmitted emittance. Part of the system also includes an Electron Beam Ion Source (EBIS) charge breeder fed by a radio frequency cooler that allows the post-acceleration of heavy masses. Beam selection downstream of the EBIS is achieved by means of a Nier type separator. The facility is in a detailed design stage and some tests, procurements and partial installation are foreseen by the end of 2016.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A01 Fast Envelope Tracking for Space Charge Dominated Injectors 1017
 
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
 
  High brightness injectors are increasingly pushing against space charge effects. Usually, particle tracking codes such as ASTRA, GPT, or PARMELA are used to model these systems however these can be slow to use for detailed optimization. It becomes increasingly challenging in future projects such as LCLS-II where space charge effects are still significant after BC1 and BC2 at 250 and 1600 MeV respectively. This talk will describe an envelope tracking approach that compares well against the particle tracking codes and could facilitate much faster optimization.  
slides icon Slides FR1A01 [0.786 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-FR1A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)