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Abstract

High brightness injectors are increasingly pushing against

space charge effects. Usually, particle tracking codes such

as ASTRA, GPT, or PARMELA are used to model these

systems however these can be slow to use for detailed op-

timization. It becomes increasingly challenging in future

projects such as LCLS-II where space charge effects are

still significant after BC1 and BC2 at 250 and 1600 MeV

respectively. This talk will describe an envelope tracking

approach that compares well against the particle tracking

codes and could facilitate much faster optimization.

INTRODUCTION

Commonly, particle tracking simulation codes are used to

design and then commission and finally have operators tune

accelerators. Only a few particles would be needed if they

act individually, but if space charge fields are significant, this

rises to 105 to 106 or even more. A known, simpler technique

is to track rms sizes and correlations (second moments),

since then space charge can be included at little cost.

In this note, we expand this technique to more com-

plex cases, beyond the usual integrable ones such as drifts,

solenoids, quadrupoles and dipoles. In particular, we apply

it to time-varying fields such as in linear accelerators.

SACHERER ENVELOPE THEORY

REVIEW

Instead of multiparticle simulations, we look at the “enve-

lope”, i.e. treat the beam statistically. [1]

If there is a distribution of particles, one would like to

calculate the final distribution from the initial. The behaviour

of the beam centroid

〈X〉 =

N
∑

i=1

X/N (1)

(where N is the number of particles, and X is the column

vector (x, Px, y, Py, z, Pz )T as in eqn. 6) is determined by the

same transfer matrix M as for an individual particle. This

is the equation of ‘first moments’. At the next level, one

would like to calculate the evolution of the beam widths, or,

‘second moments’ given by

σ ≡
1

N

N
∑

i=1

XXT (2)

∗ This work has been supported by the Natural Sciences and Engineering

Research Council of Canada. TRIUMF also receives federal funding

via a contribution agreement through the National Research Council of

Canada.
† baartman@triumf.ca

For example, σ11 = 〈x
2〉, σ12 = 〈xPx〉, σ13 = 〈xy〉, ....

For a distribution of particles so dense that we do not see

graininess on any scale of our diagnostics, the sums go over

into integrals.

Here, s is the independent variable, so coordinates 5 and

6 are rsp. time and energy: z = β0c∆t, Pz = (β0c)−1
∆E.

(This is further explained below.)

By direct substitution into the definition of σ, we find

σf =MσiM
T (3)

As well, we can define an infinitesimal transfer matrix F

where X′ = FX and the transfer matrix of an infinitesimal

length ds is M = I + Fds, we find directly

σ
′
= Fσ + σFT . (4)

This is the envelope equation. For the full 6D case, it rep-

resents 21 equations. (Because σ is symmetric.)

Infinitesimal Transfer Matrix

The general Hamiltonian can be Taylor-expanded by or-

ders in the 6 dependent variables1,

H (x; s) =
∑

i

∂H

∂xi

�����0 xi +
1

2

∑

i, j

∂2H

∂xi∂x j

�����0 xi x j + ... (5)

The subscript 0 means that the derivatives are evaluated on

the reference trajectory ∀i, xi = 0. Terms of first order are

eliminated by transforming to a coordinate system measured

with respect to the reference trajectory. The remaining terms

are second order and higher, and for linear motion, we simply

truncate at the second order.

Then the Hamiltonian looks like H = Ax2
+BxPx+Cxy+

...+UP2
z : there are 21 independent terms. A = 1

2
∂2H
∂x2 , and so

on; all derivatives are evaluated on the reference trajectory,

and may be a function of the independent variable. We

know the equations of motion from the Hamiltonian to be:

x ′ = ∂H/∂Px , P′x = −∂H/∂x, etc., where primes denote

derivatives w.r.t. the independent variable. Therefore the

equations of motion:

*.........,

x ′

P′x
y′

P′y
z′

P′z

+/////////-
=

*.............,

∂2H
∂Px∂x

∂2H

∂P2
x

... ∂2H
∂Px∂Pz

− ∂2H
∂x2 − ∂2H

∂x∂Px

... − ∂2H
∂x∂Pz

∂2H
∂Py∂x

∂2H
∂Py∂Px

... ∂2H
∂Py∂Pz

− ∂2H
∂y∂x

− ∂2H
∂y∂Px

... − ∂2H
∂y∂Pz

∂2H
∂Pz∂x

∂2H
∂Pz∂Px

... ∂2H

∂P2
z

− ∂2H
∂z∂x

− ∂2H
∂z∂Px

... − ∂2H
∂z∂Pz

+/////////////-

*........,

x

Px

y

Py

z

Pz

+////////-
(6)

1 In this shorthand, x1 = x, x2 = Px, x3 = y, ...
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or,

X′ = FX,

where F is called the ‘infinitesimal transfer matrix’. Of the

36 elements of F there are only 21 independent ones. This

equation is easily integrated if F=constant.

Example: Quadrupole

A particular case is where the beamline consists only of

elements that keep all 3 degrees of freedom independent

of each other, and there is only a focusing force K (s) that

varies with s. In other words, the Hamiltonian is eqn. 7,

H =
P2
x

2
+ K (s)

x2

2
+

P2
y

2
− K (s)

y2

2
+

P2
z

2γ2
, (7)

so

F =

*.........,

0 1 0 0 0 0

−K 0 0 0 0 0

0 0 0 1 0 0

0 0 K 0 0 0

0 0 0 0 0 1
γ2

0 0 0 0 0 0

+/////////-
(8)

When K is a constant, equation set 6 is easily solved,

and these solutions are built into matrix codes such as

TRANSPORT. But if not constant, eqns. 6 must be integrated

numerically.

Space Charge Part of F

The beam is in bunches rather than continuous, so we

need the electric field of an ellipsoidal distribution of charge.

It turns out, surprisingly [1], that the RMS linear part of the

space charge self-field depends mainly on the RMS size of

the distribution and only very weakly on its exact form. To

within a few percent, the RMS linear part of space charge

is the same as that for a uniformly populated ellipsoid. The

space charge infinitesimal transfer matrix is

Fsc =

*........,

0 0 0 0 0 0

Kxsc 0 0 0 0 0

0 0 0 0 0 0

0 0 Kysc 0 0 0

0 0 0 0 0 0

0 0 0 0 Kzsc 0

+////////-
(9)

where

Kxsc =

Q

4πǫ0(mc2/e) β2γ3

1

a3
g

(

b2

a2
,

c2

a2

)

(10)

Kysc =

Q

4πǫ0(mc2/e) β2γ3

1

b3
g

(

c2

b2
,

a2

b2

)

(11)

Kzsc =

Q

4πǫ0(mc2/e) β2γ3

1

c3
g

(

a2

c2
,

b2

c2

)

(12)

where Q is the bunch charge, the ellipsoid semi-axes in the

x, y, z directions are a, b, c, and the function g is

g(u, v) =
3

2

∫ ∞

0

(1 + s)−3/2(u + s)−1/2(v + s)−1/2ds (13)

This is from the family of Carlson elliptic integrals [2].

Arbitrary bunch distributions, orientations: For arbi-

trary distributions of the type f (x, y, z) = f

(

x2

a2 +
y2

b2 +
z2

c2

)

,

replace a, b, c with the RMS values according to the val-

ues they have for the uniform case, namely, a2
= 5σ11,

b2
= 5σ33. Because of relativity, c2 is a special case:

c2
= 5γ2σ55 [3].

Though the optics of individual particles is still linear,

the envelope equations are highly nonlinear, and with space

charge they now depend recursively upon these elliptic func-

tions of beam size. For arbitrary orientations of the ellipsoid,

one must apply a rotation matrix to F, thus making also

F23, F25, F41, F45, F61, F63 also non-zero. Elaborated for the

case with space charge, DC (unbunched), uncoupled, the

equations can be reduced to the (better-known) Kapchinsky-

Vladimirsky eqns. [4] For further reading, again refer to [1],

but also [5].

TRANSOPTR
If all elements are integrable then the transfer matrices

M are known, and they are simply multiplied together to

find the matrix of the whole beamline or synchrotron, and

the final beam is found from the initial as in eqn. 3. This

is the traditional approach, e.g. TRANSPORT, TRACE3D. To

incorporate space charge, elements were subdivided and

appropriate thin defocus lenses inserted. In TRACE3D, there

are space charge impulses applied in the approximation of

long bunches.

These techniques are approximate and non-adaptive: Why

not use the equations of motion directly? There are only 21

of them. In TRANSOPTR, eqn. 4 is solved with a Runge-Kutta

integrator. This allows not only space charge, but any general

case with no closed-form solution to equations of motion,

e.g. varying axial fields, linacs, short-soft-edge quads, etc.

The original version was written by Mark deJong, Ed

Heighway at Chalk River, Canada, [5] and applied to: beam-

lines, achromatic fitting, space charge. Since that time, it has

been expanded to include complex transport problems such

as einzel lenses, axial electric fields for accelerator columns

and soft-landing, soft solenoids, cyclotron inflectors, syn-

chrotron closed orbit fitting finding β-functions with space

charge, and now also linacs [6]. As well, its optimization

routines have expanded to include simplex method and sim-

ulated annealing.

APPLICATION TO LINEAR

ACCELERATOR

Firstly, it is important for devices, such as linacs, where

the energy deviation (coordinate 6) changes according to the

particle’s phase (coordinate 5), that we use properly canoni-

cal definions of those coordinates. And here we are bothered

by a persistent error originating from the earliest days of the

field of accelerator physics. SLAC-75 [7] mentions “At any

position in the system... ”. This means that path length s

rather than time t is the independent variable. Then goes on:
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“...particle represented by a vector”:

(x, θ, y, φ, l, δ)

(where l is trajectory length and δ ≡ ∆P/P). This is wrong:

The canonical pair are (t − t0, E − E0) or (∆t,∆E), not

(l,∆P/P). The reason it works usually is by applying a

trick: If we scale by β0c, we can make them match, since

β0c∆t = z, and in magnetic elements, ∆E/(β0c) = ∆P, but

this is only true of magnetic elements, and leads the analy-

sis astray when there are electric fields. We use this same

trick because then coordinate 6 only deviates from the usual

∆P/P in regions where electric potential Φ , 0. Further,

the coordinate 5 is not “path length difference” as stated by

Brown, but the time difference with respect to the reference

particle, scaled by the reference particle’s speed.

Hamiltonian

With the distance along the reference trajectory s as the

independent variable, the Hamiltonian is

H (x, Px, y, Py, t, E; s) = −qAs (14)

−

√

(

E − qΦ

c

)2

− m2c2 − (Px − qAx )2 − (Py − qAy )2

Potentials: The case of RF axially-symmetric electric field

can be handled entirely with no electric potential (Φ = 0),

and time-varying vector potential. This has been presented

a number of times in the past e.g. E.E. Chambers [8] who

uses an analytic electric field, but we are interested in the

following more experimentally-useful case: The electric

field along the axis E (s) has been measured and is therefore

known, and the geometry is exactly axially symmetric.

Rob Ryne [9] has treated this case; the vector potential
~A(x, y, s, t) is

Ax =
E ′(s)

2

sin(ωt + θ)

ω
x (15)

Ay =
E ′(s)

2

sin(ωt + θ)

ω
y

As =

(

−E (s) +
x2
+ y2

4

[
E ′′(s) +

ω2

c2
E (s)

])
sin(ωt + θ)

ω

This is Coulomb/Lorenz gauge, satisfies Maxwell equations

to second order in transverse coordinates, gives correct on-

axis ~E = −∂ ~A/∂t = E cos(ωt + θ).

But we needn’t use this gauge. There’s a simpler much

vector potential where the lowest order transverse compo-

nents vanish, leaving only the s component, and it also gets

rid of the second derivative of E.

I propose the following function

Ψ(x, y, s, t) = −
E ′

2

sin(ωt + θ)

ω

x2
+ y2

2
(16)

Add the gradient of this function to the previous vector po-

tential (15). We find Ax = Ay = 0 and

As = −E (s)

(

1 −
ω2

c2

x2
+ y2

4

)

sin(ωt + θ)

ω
(17)

This is considerably simpler, but now there is a scalar poten-

tial:

Φ = −
∂Ψ

∂t
= E ′ cos(ωt + θ)

x2
+ y2

4
(18)

Find reference trajectory: A complication is that a pri-

ori, we do not know the reference particle’s energy and time

coordinates. We need these in order to expand about them.

(See eqn. 5.) They can be found from the equations of motion

for x = y = Px = Py = 0:

dE

ds
=

∂H

∂t
= qE cos(ωt + θ) (19)

dt

ds
= −

∂H

∂E
=

E

P
=

1

β0c

These two equations are added to the 21 mentioned previ-

ously, so 23 simultaneous equations must now be integrated

together.

(From here on, I drop the 0 subscript: β and γ are implic-

itly assumed to be the relativistic parameters of the reference

particle.)

These give the functions E0(s) and t0(s) about which t

and E are expanded: E = E0 + ∆E, t = t0 + ∆t. So we

transform the canonical variables t and −E to (∆t,−∆E),

using as generating function

G = −

(

t −

∫

ds

β(s)c

)

(∆E + E0) (20)

(Check: ∂G
∂t
= −E, ∂G

∂(−∆E )
= ∆t.) The Hamiltonian gets the

added terms

∂G

∂s
=

∆E + E0(s)

β(s)c
− ∆tE ′0(s).

Finally, we wish to transform from (∆t,−∆E) to (z, Pz ) =

(−βc∆t,∆E/(βc)). (The reason for the sign change is as

follows: an early arrival implies ∆t < 0, but this means the

particle is ahead so z > 0.) The generating function is

G = −βc∆tPz (21)

(Check: ∂G
∂∆t
= −∆E, ∂G

∂(Pz )
= z.) The term to be added to

the Hamiltonian is

∂G

∂s
=

β′

β
zPz =

γ′

β2γ3
zPz =

qEC

βcPγ2
zPz,

where C ≡ cos(ωt0 + θ).

Now, expanding the Hamiltonian, we get the result:

Hz =

P2
x

2P
+

P2
y

2P
+

q

2βc

(

E ′C − ES
ωβ

c

)

r2

2
+

P2
z

2γ2P
+

qEC

βc

zPz

γ2P
−

qEωS

β2c2

z2

2
(22)

(C ≡ cos(ωt0(s) + θ), S ≡ sin(ωt0(s) + θ))

We can recognize individual terms. (1) The factor in

parentheses represents usual the focal power of an RF gap,

e.g. a buncher. (2) Taking the limit as ω → 0 reproduces

precisely the Hamiltonian of the DC accelerator [3]. Note

that in that case, E ′ = −φ′′.
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Infinitesimal Transfer Matrix F

Now that the Hamiltonian for linear motion (eqn. 22) has

been obtained, it is a simple matter to find the infinitesimal

transfer matrix F. Writing the equations of motion (x ′ =

∂H/∂Px , P′x = −∂H/∂x, etc.), the following F-matrix is

found for the axially symmetric linear accelerator:

F =

*................,

0 1
P

0 0 0 0

A(s) 0 0 0 0 0

0 0 0 1
P

0 0

0 0 A(s) 0 0 0

0 0 0 0
β′

β
1

γ2P

0 0 0 0 B(s) −
β′

β

+////////////////-

. (23)

where we have defined:

A(s) =
−q

2βc

(

E ′C − ES
ωβ

c

)

, B(s) =
qEωS

β2c2
. (24)

This matrix has been coded as subroutine SCLINAC into

TRANSOPTR. Along with additional the two additional eqns.

19, this sets up to calculate through any axially symmetric

linac or buncher. Function E (s) is input as a set of points

(usually 10 per cell is sufficient), which are then spline inter-

polated.

Example Calculations

Figure 1: TRIUMF linac EINJ.

The TRIUMF injector electron linac, EINJ, takes bunches

at 300 keV to ∼ 10 MeV if properly phased and the peak

gradient is 20 MV/m. Fig. 2 shows the input E (s). Three

example calculations are shown, Figs. 3,4,5.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-1.0

-0.5

0.0

0.5

1.0

Figure 2: Electric field on axis E (s) for EINJ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  20  40  60  80  100  120  140

distance (cm)

S
tR

t
en

tr

(c) R. Baartman 05/26/15

E
IN

J

ex
it

20MV/m e-linac
x_2rms/cm
z_2rms/cm

Energy/20MeV

Figure 3: This is an example for phase θ = 0 at the start of

the calculation. Red is the 2rms transverse size, and green

is the 2rms longitudinal (bunch length). The input bunch

parameters are somewhat arbitrary, roughly the condition

for a minimum beam size at exit. This particular case has

zero bunch charge.
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Figure 4: In this second example, TRANSOPTR is instructed

to fit the 65 matrix element to zero. This makes energy

insensitive to input phase, thus finding the peak energy gain

phase. This phase turns out to be θ = −15.46◦.
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Figure 5: In the third example, bunch charge has been raised

to 30 pC.
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Compute Efficiency

Each calculation above takes roughly 400 Runge-Kutta

steps for 2400 calls to the SCLINAC routine. This gives 5-

figure accuracy to the transfer matrix and the σ-matrix, and

is easily enough for describing reality considering that the

on-axis field is only known to 2 or 3 significant figures. The

extra precision is useful, however for fitting matrix or beam

matching, which is done with a downhill simplex method,

or simulated annealing for cases of more than 3 fitting pa-

rameters.

On my unremarkable, circa 2006 Intel single core desktop,

each run through the linac takes about 17 milliseconds with

zero bunch charge and 25 milliseconds with space charge.

The difference is due to the Carlson elliptic integrals needed

for the space charge case.

On a typical optics matching case, one varies 2 solenoids,

the buncher amplitude, and the linac phase, to minimize

the bunch size and energy spread at the linac output. A

calculation with such a fit requires typically a half million

total calls to SC (the space charge routine for no-linac case)

and SCLINAC, and so takes about 5 seconds CPU time. The

result is shown below. Each calculation starts from the cath-

ode (it would have been more efficient to store the beam

parameter set at the buncher entrance and start it from there,

but the savings are only a few %). The DC acceleration to

300 keV from the cathode is described in reference [3]. The

Buncher itself, located at s = 85 cm, is calculated as just

another linac, phased to give no energy gain.
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Figure 6: Typical injector optimization calculation. The

bunch charge is 15 pC.

Figure 6 is a matching optimization calculation as typically
performed through a Graphical User Interface (GUI) by an

operator. For details on the GUI, see Jung [10]. Such a

calculation takes a few seconds if initial settings are not

near optimum because then simulated annealing is used.

However, for small changes to parameters such as cavity

gradient, re-match calculation takes only a split second. A

further use of the GUI is that any input parameter can be

explored. These are set up as sliders and the turnaround

time for an individual calculation is so rapid (25 ms) that

the envelopes are seen to change continuously as the slider

is moved.

CONCLUSIONS

Envelope calculations (TRANSOPTR) are the most efficient

method when optics is linear, with space charge. Typically

these are 4 or 5 orders of magnitude faster than multiparticle

space charge simulations.
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