Author: Almomani, A.
Paper Title Page
MOPRC018 Improved Beam Dynamics and Cavity RF Design for the FAIR Proton Injector 111
MOOP06   use link to see paper's listing under its alternate paper code  
 
  • R. Tiede, A. Almomani, M. Busch, F.D. Dziuba, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  The FAIR facility at GSI requires a dedicated 70 MeV, 70 mA proton injector for the research program with intense antiproton beams. The main accelerator part consists of six 'Crossbar H-type' (CH) cavities operated at 325 MHz. Based on a linac layout carefully developed over several years, recently the beam dynamics has been revised with the scope of finalising the design and thus being able to start the construction of the main linac components. As compared to previous designs the MEBT behind the RFQ was slightly extended, the gap numbers per CH cavity and the voltage distributions were optimised and the layout of the intermediate diagnostics section including a rebuncher cavity at 33 MeV was redesigned. Finally, detailed machine error studies were performed in order to check the error response of the new design and the steering concept in particular. In the consequence, the final parameters obtained from the beam dynamics update are used for finalizing the CH-DTL cavity design by CST-MWS calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR059 Status of a 325 MHz High Gradient CH - Cavity 982
 
  • A. Almomani, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF with contract number 05P12RFRB9
The reported linac developments aim on compact ion accelerators and on an increase of the effective accelerat-ing field (voltage gain per meter). Within a funded pro-ject, a high gradient Crossbar H-type CH-cavity operat-ed at 325 MHz was developed and successfully built at IAP-Frankfurt. The effective accelerating field for this cavity is expected to reach about 13.3 MV/m at a beam energy of 12.5 AMeV, corresponding to β=0.164. The results from this cavity might influence the later energy upgrade of the Unilac at GSI Darmstadt. The aim is a compact pulsed high current ion accelerator for significantly higher energies up to 200 AMeV. Detailed investigations for two different types of copper plating (high lustre and lustre less) with respect to the high spark limit will be performed on this cavity. The 325 MHz GSI 3 MW klystron test stand is best suited for these investigations. Additionally, operating of normal conducting cavities for the case of very short RF pulses will be discussed at cryogenic temperature.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)