Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPP049 | Test Stand for 325 MHz Power Couplers | cavity, vacuum, pick-up, high-voltage | 538 |
|
|||
325 MHz superconducting Single Spoke resonators (SSR1) will be utilized in the Project X Injector Experiment (PXIE). Developed in Fermilab the main power coupler will be supply 2kW CW RF power to each cavity. Fermilab developed and designed the special test stand where the couplers will be tested up to 10 kW and design properties be confirmed. This paper describes the design of the coupler test stand and preliminary results of the tests. | |||
THPP050 | Status of 325 MHz Main Couplers for PXIE | cavity, Windows, vacuum, pick-up | 963 |
|
|||
The Project X Injector Experiment (PXIE) at Fermilab will include one cryomodule with eight 325 MHz single spoke superconductive cavities (SSR1). Each cavity requires approximately 2 kW CW RF power for 1 mA beam current operation. A future upgrade will require up to 8 kW RF power per cavity. Fermilab has designed, procured and tested two prototype couplers for the SSR type cavities. Status of the 325 MHz main coupler development for PXIE is reported. | |||
THPP075 | Development of Superconducting Spoke Cavity for Electron Accelerators | cavity, simulation, electron, acceleration | 1030 |
|
|||
Funding: This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We have launched a development program of a superconducting spoke cavity for electron acceleration, in order to realize a compact industrial-use X-ray source with the laser-Compton scattering. Efforts for optimizing a cavity design by the electromagnetic field simulation, tracking of multipactor electrons and mechanical property calculations have been continued so far. The optimization processes reached the final stage, and studies toward fabrication processes started. In this presentation, we will show results and processes of the optimization. Attempts to fabricate the spoke cavity, which have just begun, will also be presented. |
|||
THPP096 | RF Coaxial Resonator for Investigating Multipactor Discharges on Metal and Dielectric Surfaces | electron, vacuum, experiment, coupling | 1074 |
|
|||
Multipactor discharge is a phenomenon in which electrons impact one or more material surfaces in resonance with an alternating electric field. The discharge can occur for a wide range of frequencies, from the MHz range to tens of GHz, and in wide array of geometries if the impacted surface has a secondary electron emission (SEE) yield larger than one. The discharge can take place on a single surface or between two surfaces. A novel coaxial resonator to investigate two-surface multipactor discharges on metal and dielectric surfaces in the gap region under vacuum conditions has been designed and tested. The resonator is ~ 100 mm in length with an outer diameter of ~ 60 mm (internal dimensions). A pulsed RF source delivers up to 30 W average power over a wide frequency range 650-900 MHz to the RF resonator. The incident and reflected RF signals are monitored by calibrated RF diodes. An electron probe provides temporal measurements of the multipacting electron current with respect to the RF power. These experiments were successful in identifying multipacting and allowed us the evaluation of a home made sputtered titanium nitride (TiN) thin layers as a Multipactor suppressor. | |||
THPP123 | Experience of Operation of the Electron Linear Accelerator Based on Parallel Coupled Accelerating Structure | cavity, electron, controls, gun | 1144 |
|
|||
An electron linear accelerator based on parallel coupled accelerating structure was developed and produced by Budker Institute of Nuclear Physics SB RAS and Institute of Chemical Kinetics and Combustion SB RAS. Short and long versions of the accelerating structure at 2450 MHz were built. For easy disassembly electrical and vacuum connections of the first (short) structure were made using indium seals. The second structure was brazed. Now the accelerator is in operation and used to study the accelerating and RF technologies. In the report the features of the accelerator are presented, including the design and characteristics of RF antenna and solid-state switch for the electron gun. Test results of the long parallel coupled accelerating structure are discussed. Observations made on the short structure surface after it had been opened are depicted. Now the short structure undergoes certain modifications in order to accelerate higher beam currents. | |||
THPP126 | Design of the High Repetition Rate Photocathode Gun for the CLARA Project | cavity, gun, simulation, electron | 1155 |
|
|||
The CLARA injector is required to deliver ultrashort singe electron pulses with a charge of 250 pC following with a repetition rate of 100 and/or 400 Hz. It should also provide 2 us trains of twenty 25 pC pulses with a repetition rate 100 Hz. To meet this challenge, a 1.5 cell S-band photocathode gun with a field of up to 120 MV/m and coaxial coupling has been chosen. The length of the first cell of 0.5 is decided on the basis of beam dynamic simulation with the goal to obtain optimal for CLARA parameters. In order to improve amplitude and phase stability of the RF field, the gun is equipped with RF probes, which will provide feedback to the RF system. The gun and coupler were designed to accept up to 10 MW peak and 10 kW average RF powers. Cooling will be achieved by water channels cut into the bulk of the copper. The coupler will transition from waveguide to coax using an innovative H-shaped dual feed system that cancels out any dipole mode components and allows tuning of the match. The RF and mechanical design of the CLARA high brightness photocathode gun along with beam dynamics simulations are presented in this paper. | |||