Paper | Title | Page |
---|---|---|
MOPP064 | R&D of the 17 MeV MYRRHA Injector | 202 |
SUPG010 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Project supported by the EU, FP7 MAX, Contract No. 269565 MYRRHA is designed as an accelerator driven system (ADS) for transmutation of long-lived radioactive waste. The challenge of the linac development is the very high reliability of the accelerator to limit the thermal stress inside the reactor. With the concept of parallel redundancy the injector will supply a cw proton beam with 4 mA and 17 MeV to the main linac. The new MYRRHA injector layout consists of a very robust beam dynamics design with low emittance growth rates. Sufficient drift space provides plenty room for diagnostic elements and increases the mountability. Behind a 4-Rod-RFQ and a pair of two-gap QWR rebunchers at 1.5 MeV the protons are matched into the CH cavity section. A focussing triplet between the rebunchers ensures an ideal transversal matching into the doublet lattice. Each of the 7 RT CH structures has a constant phase profile and does not exceed thermal losses of 29 kW/m. The transition to the 5 SC CH cavities with constant beta profile is at 5.9 MeV. For a safe operation of the niobium resonators the electric and magnetic peak fields are defined below 25 MV/m and 57 mT respectively. |
||
![]() |
Poster MOPP064 [4.024 MB] | |
TUPP060 | Development of a 217 MHz Superconducting CH Structure | 563 |
SUPG009 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Helmholtz-Institut Mainz, Bundesministerium für Bildung und Forschung contract number 05P12RFRBL To compete in the production of Super Heavy Elements (SHE) in the future a 7.3 AMeV superconducting (sc) continuous wave (cw) LINAC is planned at GSI. The baseline design consists of 9 sc Crossbar-H-mode (CH) cavities operated at 217 MHz. Currently an advanced cw demonstrator is under design at the Institute for Applied Physics (IAP) at Frankfurt University. The purpose of the advanced demonstrator is to investigate a new concept for the superconducting CH structures. It is based on shorter CH-cavities with 8 equidistant gaps without girders and with stiffening brackets at the front and end cap to reduce the pressure sensitivity. One major goal of the advanced demonstrator is to show that the new design leads to higher acceleration gradients and smaller Ep/Ea values. In this contribution first simulation results and technical layouts will be presented. |
||
![]() |
Poster TUPP060 [0.593 MB] | |
TUPP062 | A Rebunching CH Cavity for Intense Proton Beams | 566 |
SUPG011 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Project supported by the EU, FP7 MAX, Contract No. 269565 The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will provide ultra short neutron pulses at high intensities and repetition rates. The facility is currently under construction at the Goethe-University in Frankfurt am Main (Germany). A 5-Gap CH rebuncher is installed behind a coupled RFQ/IH-DTL combination at the end of the LINAC section between two magnetic quadrupole triplets. It will be used for varying the final proton energy as well as for focusing the bunch longitudinally to compensate huge space charge forces at currents up to 200 mA at the final stage of extension. High current beam dynamic simulations have been performed. They include benchmarking of different beam dynamic codes like LORASR and TraceWin, as well as validating the results by measurements. Detailed examination of multipole field impact, due to the cavity’s geometry, together with error tolerance studies and thermal simulations are also performed. Furthermore, this CH rebuncher serves as a prototype for rt CH cavities at MYRRHA (Belgium), an Accelerator Driven System for transmutation of high level nuclear waste. After copper plating the cavity, RF conditioning will start soon. |
||
![]() |
Poster TUPP062 [6.015 MB] | |
TUPP063 | Improvements of the LORASR Code and their Impact on Current Beam Dynamics Designs | 569 |
|
||
LORASR is a multi-particle tracking code optimized for the beam dynamics design of ‘Combined Zero Degree Structure (KONUS)’ lattices, which can benefit from an adapted input file structure and code architecture. Recent code developments focused on the implementation of tools for machine error studies and loss profile investigations, including also steering correction strategies. These tools are a stringent necessity for the design of high intensity linacs. Thus, the abilities of the present LORASR release allow performing a manifold of checks and optimizations before finalizing the layouts of KONUS-based or conventional linacs. Two representative examples are the MAX-MYRRHA Injector and the GSI FAIR Facility Proton Linac, both under development with strong participation of IAP, Frankfurt University. This paper presents the status of the LORASR code development with focus on the new features and illustrates the impact on current designs by examples taken from the above-mentioned projects. | ||