Author: Vormann, H.
Paper Title Page
THPLB07 Experience with a 4-Rod CW Radio Frequency Quadrupole 825
 
  • P. Gerhard, W.A. Barth, L.A. Dahl, W. Hartmann, G. Schreiber, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  Since 1991 the High Charge State Injector (HLI) provides heavy ion beams for the linear accelerator UNILAC at GSI*. It is equipped with an ECR ion source and an RFQ-IH linac which accelerates highly charged ion beams with high duty factor of up to 30% to 1.4 MeV/u for further acceleration in the Alvarez DTL of the UNILAC. Main user of these beams is the Super Heavy Element (SHE) research, one of the outstanding projects at GSI**. Experiments like TASCA and SHIP strongly benefit from the high average beam intensities. After two decades of successful operation the four-rod Radio Frequency Quadrupole (RFQ) accelerator was replaced in 2010 by a newly designed RFQ of the same type**. Besides higher beam transmission, the principal intention of this upgrade was to raise the duty factor up to 100%, since the HLI is foreseen as injector for the upcoming cw linac dedicated to the SHE program**. Commissioning and operational experience from the first years revealed that this goal could not be reached easily. In this paper we present the RFQ design, commissioning results, operational experience and future activities.
* N. Angert et al., EPAC92, Berlin, Germany (1992), p. 167
** L. Dahl et al., LINAC10, Tsukuba, Japan (2010), MOP042, and references therein
 
slides icon Slides THPLB07 [0.986 MB]  
 
THPB035 Experience with a 4-Rod CW Radio Frequency Quadrupole 930
 
  • P. Gerhard, W.A. Barth, L.A. Dahl, W. Hartmann, G. Schreiber, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  Since 1991 the High Charge State Injector (HLI) provides heavy ion beams for the linear accelerator UNILAC at GSI*. It is equipped with an ECR ion source and an RFQ-IH linac which accelerates highly charged ion beams with high duty factor of up to 30% to 1.4 MeV/u for further acceleration in the Alvarez DTL of the UNILAC. Main user of these beams is the Super Heavy Element (SHE) research, one of the outstanding projects at GSI**. Experiments like TASCA and SHIP strongly benefit from the high average beam intensities. After two decades of successful operation the four-rod Radio Frequency Quadrupole (RFQ) accelerator was replaced in 2010 by a newly designed RFQ of the same type**. Besides higher beam transmission, the principal intention of this upgrade was to raise the duty factor up to 100%, since the HLI is foreseen as injector for the upcoming cw linac dedicated to the SHE program**. Commissioning and operational experience from the first years revealed that this goal could not be reached easily. In this paper we present the RFQ design, commissioning results, operational experience and future activities.
* N. Angert et al., EPAC92, Berlin, Germany (1992), p. 167
** L. Dahl et al., LINAC10, Tsukuba, Japan (2010), MOP042, and references therein
 
 
TUPB035 A New Design of the RFQ Channel for GSI HITRAP Facility 555
 
  • S.G. Yaramyshev, W.A. Barth, G. Clemente, L.A. Dahl, V. Gettmann, F. Herfurth, M. Kaiser, M.T. Maier, D. Neidherr, A. Orzhekhovskaya, H. Vormann, G. Vorobjev
    GSI, Darmstadt, Germany
  • R. Repnow
    MPI-K, Heidelberg, Germany
 
  The HITRAP linac at GSI is designed to decelerate ions with mass to charge ratio of A/Z<3 from 4 MeV/u to 6 keV/u for experiments with ion traps. The particles are decelerated to 500 keV/u with an IH-DTL stucture and finally to 6 keV/u with a 4-rod RFQ. During commissioning stage the deceleration to approx. 500 keV/u was successfully demonstrated, while no particles behind the RFQ with an energy of 6 keV/u were observed. Dedicated simulations with DYNAMION code, based on 3D-fotometrie of the fabricated RFQ electrodes were successfully performed comprehending the commissioning results. In a second step the simulations have been experimentally confirmed at a test-stand (MPI, Heidelberg). An input energy, accepted by the RFQ channel is significantly higher than design value. For this reason the longitudinal beam emittance after deceleration with IH structure does not fit to the longitudinal RFQ acceptance. To solve this problem a new design of the RFQ channel with a correct input energy has been started. New RFQ parameters and the results of the beam dynamics simulations are presented in this paper.