Author: Palmieri, A.
Paper Title Page
TUPB094 High Power Tests of TRASCO RFQ Couplers 681
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri, F. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • O. Brunasso Cattarello, R. Panero
    INFN-Torino, Torino, Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The 352.2 MHz 7.13 m long TRASCO RFQ requires an overall amount of 900 kW CW RF power in order to deliver the 40 mA proton beam from the initial energy of 80 keV to the final energy of 5 MeV. For such a purpose a system of eight compact (ϕext=38 mm, ϕint=19.4 mm) loop-based couplers was designed. In a first phase, only the first two (out of six) modules of the RFQ were tested at full power. Therefore only two (out of eight) couplers were used. In order to completely characterize these couplers, a dedicated test bench was prepared, consisting of a bridge waveguide and diagnostics (reflected power, vacuum, arc detectors etc.), onto which a couple of couplers was connected for transmission measurements. Each coupler was tested with a forward power of up to 140 kW. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
 
THPLB08 High-Power RF Conditioning of the TRASCO RFQ 828
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
slides icon Slides THPLB08 [1.384 MB]  
 
THPB040 High-Power RF Conditioning of the TRASCO RFQ 945
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
 
THPB043 The RFQ injector for the Radioactive Ion Beam of SPES Project 951
 
  • M. Comunian, F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  A Continous Wave Radio Frequency Quadrupole Accelerator has been designed for the Radioactive Ion Beam of SPES Project to be used as an Injector of the ALPI Linac. The RFQ frequency is 80 MHz for an input energy of 40 keV, with output energy of 5 MeV and ion ratio q/A<= 1/7. Particular care has been put in the design phase to include an internal bunching section able to reduce the longitudinal output emittance. The details of the RF study of such a cavity are included as well.