Author: Desmons, M.
Paper Title Page
TUPB094 High Power Tests of TRASCO RFQ Couplers 681
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri, F. Scarpa
    INFN/LNL, Legnaro (PD), Italy
  • O. Brunasso Cattarello, R. Panero
    INFN-Torino, Torino, Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The 352.2 MHz 7.13 m long TRASCO RFQ requires an overall amount of 900 kW CW RF power in order to deliver the 40 mA proton beam from the initial energy of 80 keV to the final energy of 5 MeV. For such a purpose a system of eight compact (ϕext=38 mm, ϕint=19.4 mm) loop-based couplers was designed. In a first phase, only the first two (out of six) modules of the RFQ were tested at full power. Therefore only two (out of eight) couplers were used. In order to completely characterize these couplers, a dedicated test bench was prepared, consisting of a bridge waveguide and diagnostics (reflected power, vacuum, arc detectors etc.), onto which a couple of couplers was connected for transmission measurements. Each coupler was tested with a forward power of up to 140 kW. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
 
THPLB08 High-Power RF Conditioning of the TRASCO RFQ 828
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.  
slides icon Slides THPLB08 [1.384 MB]  
 
THPB031 Status Report on the French High-intensity Proton Injector Project at SACLAY (IPHI) 921
 
  • B. Pottin, M. Desmons, A. France, R. Gobin, O. Piquet
    CEA/DSM/IRFU, France
 
  The construction of IPHI (High Power Proton Accelerator) is in its final step of installation. The high intensity light ion source (SILHI) has been built first to produce regularly CW high intensity (over 100 mA) proton beams. The low energy front end of IPHI is based on a 352 MHz, 6 m long Radiofrequency Quadrupole (RFQ) cavity. The RFQ will accelerate beam up to 100 mA with energy up to 3 MeV. A diagnostics line has been designed to measure all the main characteristics of the beam at the RFQ output. In this paper we will present the status for the main components of the injector, in particularly the RFQ fabrication and the RF power facilities.  
 
THPB038 Assembly and RF Tuning of the Linac4 RFQ at CERN 939
 
  • C. Rossi, A. Dallocchio, J. Hansen, J.-B. Lallement, A.M. Lombardi, S.J. Mathot, D. Pugnat, M.A. Timmins, G. Vandoni, M. Vretenar
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, Y. Le Noa, J. Novo, O. Piquet
    CEA/DSM/IRFU, France
 
  The fabrication of Linac4 is progressing at CERN with the goal of making a 160 MeV H beam available to the LHC injection chain as from 2015. In the Linac4 the first stage of beam acceleration, after its extraction from the ion source, is provided by a Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane kind, has been designed in the frame of a collaboration between CERN and CEA and has been completely machined and assembled at CERN. The paper describes the assembly of the RFQ structure and reports the results of RF low power measurements, in order to achieve the required accelerating field flatness within 1% of the nominal field profile.  
 
THPB040 High-Power RF Conditioning of the TRASCO RFQ 945
 
  • E. Fagotti, L. Antoniazzi, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
  • M. Desmons
    CEA/DSM/IRFU, France
 
  The TRASCO RFQ is designed to accelerate a 40 mA proton beam up to 5 MeV. It is a CW machine which has to show stable operation and provide the requested availability. It is composed of three electromagnetic segment coupled via two coupling cells. Each segment is divided into two 1.2 m long OFE copper modules. The RFQ is fed through eight loop-based power couplers to deliver RF to the cavity from a 352.2 MHZ, 1.3 MW klystron. After couplers conditioning, the first electromagnetic segment was successfully tested at full power. RFQ cavity reached the nominal 68 kV inter-vane voltage (1.8 Kilp.) in CW operation. Moreover, during conditioning in pulsed operation, it was possible to reach 83 kV inter-vane voltage (2.2 Kilp.) with a 1% duty cycle. The description of the experimental setup and procedure, as well as the main results of the conditioning procedure will be reported in this paper.