Author: Barth, W.A.
Paper Title Page
SUPB022 First Measurements on the 325 MHz Superconducting CH Cavity 56
 
  • M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
  • M. Pekeler
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by HIM, GSI, BMBF Contr. No. 06FY161I
At the Institute for Applied Physics (IAP), Frankfurt University, a superconducting 325 MHz CH-Cavity has been designed and built. This 7-cell cavity has a geometrical \beta of 0.16 corresponding to a beam energy of 11.4 AMeV. The design gradient is 5 MV/m. Novel features of this resonator are a compact design, low peak fields, easy surface processing and power coupling. Furthermore a new tuning system based on bellow tuners inside the resonator will control the frequency during operation. After successful rf tests in Frankfurt the cavity will be tested with a 10 mA, 11.4 AMeV beam delivered by the GSI UNILAC. In this paper first measurements and corresponding simulations will be presented.
 
 
SUPB023 Status of the Superconducting CW Demonstrator for GSI 59
 
  • F.D. Dziuba, M. Amberg, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Helmholtz Institut Mainz (HIM), GSI, BMBF Contr. No. 06FY7102
Since the existing UNILAC at GSI will be used as an injector for the FAIR facility a new superconducting (sc) continous wave (cw) LINAC is highly requested by a broad community of future users to fulfil the requirements of nuclear chemistry, especially in the research field of Super Heavy Elements (SHE). This LINAC is under design in collaboration with the Institute for Applied Physics (IAP) of Frankfurt University, GSI and the Helmholtz Institut Mainz (HIM). It will consist of 9 sc Crossbar-H-mode (CH) cavities operated at 217 MHz which provide an energy up to 7.3 AMeV. Currently, a prototype of the cw LINAC is under development. This demonstrator comprises the first sc CH cavity of the LINAC embedded between two sc solenoids mounted in a horizontal cryomodule. One important milestone of the project will be a full performance test of the demonstrator by injecting and accelerating a beam from the GSI High Charge State Injector (HLI) in 2014. The status of the demonstrator is presented.
 
 
MO3A01 Development of H-mode Linacs for the FAIR Project 120
 
  • G. Clemente, W.A. Barth, L. Groening, S. Mickat, B. Schlitt, W. Vinzenz
    GSI, Darmstadt, Germany
  • R. M. Brodhage, M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  H-mode cavities offer outstanding shunt impedances at low beam energies and enable the acceleration of intense ion beams. Crossed-bar H-cavities extend these properties to energies even beyond 100 MeV. Thus, the designs of the new injector linacs for FAIR, i.e. a 70 MeV, 70 mA proton driver for pbar-production and a cw intermediate mass, superconducting ion linac are based on these novel cavities. Several prototypes (normal & super-conducting) have been built and successfully tested. Moreover, designs for a replacement of the 80 MV Alvarez section of the GSI - Unilac will be discussed to improve the capabilities as the future FAIR heavy ion injector.  
slides icon Slides MO3A01 [2.741 MB]  
 
TUPB035 A New Design of the RFQ Channel for GSI HITRAP Facility 555
 
  • S.G. Yaramyshev, W.A. Barth, G. Clemente, L.A. Dahl, V. Gettmann, F. Herfurth, M. Kaiser, M.T. Maier, D. Neidherr, A. Orzhekhovskaya, H. Vormann, G. Vorobjev
    GSI, Darmstadt, Germany
  • R. Repnow
    MPI-K, Heidelberg, Germany
 
  The HITRAP linac at GSI is designed to decelerate ions with mass to charge ratio of A/Z<3 from 4 MeV/u to 6 keV/u for experiments with ion traps. The particles are decelerated to 500 keV/u with an IH-DTL stucture and finally to 6 keV/u with a 4-rod RFQ. During commissioning stage the deceleration to approx. 500 keV/u was successfully demonstrated, while no particles behind the RFQ with an energy of 6 keV/u were observed. Dedicated simulations with DYNAMION code, based on 3D-fotometrie of the fabricated RFQ electrodes were successfully performed comprehending the commissioning results. In a second step the simulations have been experimentally confirmed at a test-stand (MPI, Heidelberg). An input energy, accepted by the RFQ channel is significantly higher than design value. For this reason the longitudinal beam emittance after deceleration with IH structure does not fit to the longitudinal RFQ acceptance. To solve this problem a new design of the RFQ channel with a correct input energy has been started. New RFQ parameters and the results of the beam dynamics simulations are presented in this paper.  
 
TUPB071 First Measurements on the 325 MHz Superconducting CH Cavity 636
 
  • M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
  • M. Pekeler
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by GSI, BMBF Contr. No. 06FY7102, 06FY9089I
At the Institute for Applied Physics (IAP), Frankfurt University, a superconducting 325 MHz CH-Cavity has been designed and built. This 7-cell cavity has a geometrical \beta of 0.16 corresponding to a beam energy of 11.4 AMeV. The design gradient is 5 MV/m. Novel features of this resonator are a compact design, low peak fields, easy surface processing and power coupling. Furthermore a new tuning system based on bellow tuners inside the resonator will control the frequency during operation. After successful rf tests in Frankfurt the cavity will be tested with a 10 mA, 11.4 AMeV beam delivered by the GSI UNILAC. In this paper first measurements and corresponding simulations will be presented.
 
 
TUPB072 Status of the Superconducting CW Demonstrator for GSI 639
 
  • F.D. Dziuba, M. Amberg, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Helmholtz Institut Mainz (HIM), GSI, BMBF Contr. No. 06FY7102
Since the existing UNILAC at GSI will be used as an injector for the FAIR facility a new superconducting (sc) continous wave (cw) LINAC is highly requested by a broad community of future users to fulfil the requirements of nuclear chemistry, especially in the research field of Super Heavy Elements (SHE). This LINAC is under design in collaboration with the Institute for Applied Physics (IAP) of Frankfurt University, GSI and the Helmholtz Institut Mainz (HIM). It will consist of 9 sc Crossbar-H-mode (CH) cavities operated at 217 MHz which provide an energy up to 7.3 AMeV. Currently, a prototype of the cw LINAC is under development. This demonstrator comprises the first sc CH cavity of the LINAC embedded between two sc solenoids mounted in a horizontal cryomodule. One important milestone of the project will be a full performance test of the demonstrator by injecting and accelerating a beam from the GSI High Charge State Injector (HLI) in 2014. The status of the demonstrator is presented.
 
 
TUPB074 Superconducting CW Heavy Ion Linac at GSI 645
 
  • W.A. Barth, V. Gettmann, S. Mickat
    GSI, Darmstadt, Germany
  • W.A. Barth, P. Gerhard
    HIM, Mainz, Germany
 
  Funding: Helmholtz Institute Mainz (HIM)
An upgrade program has to be realized in the next years, such that enhanced primary beam intensities at the experiment target are available. For this a new sc 28 GHz full performance ECR ion source is under development. Via a new low energy beam line an already installed new RFQ and an IH-DTL will provide for cw-heavy ion beams with high average beam intensity. It is planned to build a new cw-heavy ion-linac behind this high charge state injector. In preparation an R&D program is still ongoing: The first linac section comprising a sc CH-cavity embedded by two sc solenoids (financed by HIM) as a demonstrator will be tested with beam at the GSI High Charge Injector (HLI).The new linac should feed the GSI flagship experiments SHIP and TASCA, as well as material research, biophysics and plasma physics experiments in the MeV/u-area. The linac will be integrated in the GSI-UNILAC-environment; it is housed by the existing constructions. Different layout scenarios of a multipurpose high intensity heavy ion facility will be presented as well as the schedule for preparation and integration of the new cw-linac.
 
 
THPLB07 Experience with a 4-Rod CW Radio Frequency Quadrupole 825
 
  • P. Gerhard, W.A. Barth, L.A. Dahl, W. Hartmann, G. Schreiber, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  Since 1991 the High Charge State Injector (HLI) provides heavy ion beams for the linear accelerator UNILAC at GSI*. It is equipped with an ECR ion source and an RFQ-IH linac which accelerates highly charged ion beams with high duty factor of up to 30% to 1.4 MeV/u for further acceleration in the Alvarez DTL of the UNILAC. Main user of these beams is the Super Heavy Element (SHE) research, one of the outstanding projects at GSI**. Experiments like TASCA and SHIP strongly benefit from the high average beam intensities. After two decades of successful operation the four-rod Radio Frequency Quadrupole (RFQ) accelerator was replaced in 2010 by a newly designed RFQ of the same type**. Besides higher beam transmission, the principal intention of this upgrade was to raise the duty factor up to 100%, since the HLI is foreseen as injector for the upcoming cw linac dedicated to the SHE program**. Commissioning and operational experience from the first years revealed that this goal could not be reached easily. In this paper we present the RFQ design, commissioning results, operational experience and future activities.
* N. Angert et al., EPAC92, Berlin, Germany (1992), p. 167
** L. Dahl et al., LINAC10, Tsukuba, Japan (2010), MOP042, and references therein
 
slides icon Slides THPLB07 [0.986 MB]  
 
THPB034 Status of the FAIR 70 MeV Proton Linac 927
 
  • L. Groening, W.A. Barth, R. Berezov, G. Clemente, P. Forck, R. Hollinger, A. Krämer, C. Mühle, J. Pfister, G. Schreiber, J. Trüller, W. Vinzenz, C. Will
    GSI, Darmstadt, Germany
  • N. Chauvin, O. Delferrière, O. Tuske
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • B. Launé, J. Lesrel
    IPN, Orsay, France
  • C.S. Simon
    CEA/DSM/IRFU, France
 
  To provide the primary proton beam for the FAIR anti-proton research program, a 70 MeV, 70 mA linac is currently under design & construction at GSI. The nc machine comprises an ECR source, a 3 MeV RFQ, and a DTL based on CH-cavities. Up to 36 MeV pairs of rf-coupled cavities (CCH) are used. A prototype cavity has been built and is prepared for high power rf-testing. An overview of the status as well as on the perspectives of the project is given.  
 
THPB035 Experience with a 4-Rod CW Radio Frequency Quadrupole 930
 
  • P. Gerhard, W.A. Barth, L.A. Dahl, W. Hartmann, G. Schreiber, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  Since 1991 the High Charge State Injector (HLI) provides heavy ion beams for the linear accelerator UNILAC at GSI*. It is equipped with an ECR ion source and an RFQ-IH linac which accelerates highly charged ion beams with high duty factor of up to 30% to 1.4 MeV/u for further acceleration in the Alvarez DTL of the UNILAC. Main user of these beams is the Super Heavy Element (SHE) research, one of the outstanding projects at GSI**. Experiments like TASCA and SHIP strongly benefit from the high average beam intensities. After two decades of successful operation the four-rod Radio Frequency Quadrupole (RFQ) accelerator was replaced in 2010 by a newly designed RFQ of the same type**. Besides higher beam transmission, the principal intention of this upgrade was to raise the duty factor up to 100%, since the HLI is foreseen as injector for the upcoming cw linac dedicated to the SHE program**. Commissioning and operational experience from the first years revealed that this goal could not be reached easily. In this paper we present the RFQ design, commissioning results, operational experience and future activities.
* N. Angert et al., EPAC92, Berlin, Germany (1992), p. 167
** L. Dahl et al., LINAC10, Tsukuba, Japan (2010), MOP042, and references therein
 
 
TUPB074 Superconducting CW Heavy Ion Linac at GSI 645
 
  • W.A. Barth, V. Gettmann, S. Mickat
    GSI, Darmstadt, Germany
  • W.A. Barth, P. Gerhard
    HIM, Mainz, Germany
 
  Funding: Helmholtz Institute Mainz (HIM)
An upgrade program has to be realized in the next years, such that enhanced primary beam intensities at the experiment target are available. For this a new sc 28 GHz full performance ECR ion source is under development. Via a new low energy beam line an already installed new RFQ and an IH-DTL will provide for cw-heavy ion beams with high average beam intensity. It is planned to build a new cw-heavy ion-linac behind this high charge state injector. In preparation an R&D program is still ongoing: The first linac section comprising a sc CH-cavity embedded by two sc solenoids (financed by HIM) as a demonstrator will be tested with beam at the GSI High Charge Injector (HLI).The new linac should feed the GSI flagship experiments SHIP and TASCA, as well as material research, biophysics and plasma physics experiments in the MeV/u-area. The linac will be integrated in the GSI-UNILAC-environment; it is housed by the existing constructions. Different layout scenarios of a multipurpose high intensity heavy ion facility will be presented as well as the schedule for preparation and integration of the new cw-linac.