Paper | Title | Page |
---|---|---|
MOP008 | Design and Performance of Optics for Multi-Energy Injector Linac | 46 |
|
||
Injector linac provides injection beams for four storage rings, KEKB high energy electron ring (HER), KEKB low energy positron ring (LER), PF-AR electron ring, and PF electron ring. The injection beams for these rings have different energies and intensities. Recently, a requirement of simultaneous injection among these rings arises to make a top-up injection possible. Magnetic fields of DC magnets to confine the beam to the accelerating structures can not be changed between pulse to pulse, although the beam energy can be controlled by fast rf phase shifters of klystrons. This implies that common magnetic fields of bending magnets and quadrupole magnets should be utilized to deliver beams having different characteristics. Therefore, we have designed multi-energy optics for KEKB high energy electron ring (8 GeV, 1 nC/pulse) and PF electron ring (2.5 GeV, 0.1 nC/pulse) and present a performance of the multi-energy injector linac. | ||
TUP016 | BPM DAQ System Using Fast Digital Oscilloscope | 280 |
|
||
The KEK injector linac is planned to be upgraded to perform the simultaneous injection for four rings (KEKB e-/ e+, PF and PF-AR rings). In this operation mode, each rf pulse accelerates the beam with different charge and energy by controlling the low-level rf phase. For this purpose, it is strongly required to improve the BPM DAQ system. In the current system, maximum DAQ rate is strictly limited by the oscilloscope performance, and it should be improved for the 50-Hz measurement. We made decision to replace the current DAQ system by the fast digital oscilloscope. In this presentation, the system description of the new DAQ system and the result of the performance test will be presented. | ||
TUP064 | Adaptive Three-Dimensional RMS Envelope Simulation in the SAD Accelerator Modeling Environment | 397 |
|
||
The capability for three-dimensional RMS envelope simulation, including space charge, has been implemented in the SAD accelerator modeling environment used at KEK. The SAD (for Strategic Accelerator Design) modeling system consists of a compiled simulation engine, an in-house scripting language SADScript, and user interface support both in Tcl/tk script and SADScript. The RMS envelope simulator is implemented primarily in the SADScript language, which much resembles the Mathematica language. The dynamics within the model are similar to that used by TRACE3D, TRANSPORT, and XAL. Specifically, the symmetric matrix of all second-order beam moments is propagated using a linear beam optics model for the beamline. However, the current simulation engine employs an adaptive space-charge algorithm which actively adjusts the solution integration to maintain a specified accuracy, as well as imposing the symplectic condition. It is designed to keep the integration step size as large as possible while enforcing that the residual solution error remain below a given tolerance. The paper concentrates primarily on the adaptive nature of the RMS simulation, since this is the novel feature. | ||
THP091 | Experimental Study of Positron Production from Monocrystalline Targets at the KEKB Injector Linac | 797 |
|
||
Intense positron sources are widely investigated for the next-generation of linear colliders and B-factories. A new method utilizing an axially-oriented crystal as a positron-production target is one of the bright schemes since it provides a powerful photon source through channeling and coherent bremsstrahlung processes when high-energy electrons penetrate the target. A series of positron-production experiments with tungsten crystal alone and diamond target combined with an amorphous tungsten plate have been carried out at the KEKB injector linac. The tungsten crystals with different thicknesses (2.2, 5.3, 8.9, 12.0 and 14.2 mm) and the diamonds with different thicknesses (4.57 and 7.25 mm) were tested on a goniometer by using 4 and 8-GeV electron beams, respectively. The positron-production yields were measured with a magnetic spectrometer at the positron momentum of 10 and 20 MeV/c. In this report the experimental results are summarized on the enhancements of the positron yield from these crystal targets compared to amorphous targets of the same thickness.
*Email address: tsuyoshi.suwada@kek.jp |
||
THP092 | Control System for a Limitation of an Integrated Amount of Beam Charges Delivered from the KEKB Injector Linac | 800 |
|
||
A new control system is under construction for radiation safety at the KEKB injector linac. The control system restricts the integrated amount of the beam charges delivered from an electron gun in order to keep the radiation safety with high reliability in a daily operation of the linac. The old control system of the radiation safety has been working based on a software control implemented on a UNIX-based workstation. However, this control system is not possible to be implemented for the long-term linac operation with high reliability. The new control system comprises a charge-integration-type analog circuit mounted along with a CPU chip and a data acquisition system based on programmable logic controllers. The fast analog circuit can detect the beam-charge signals delivered from a wall-current monitor, and control the beam-abort trigger pulses pulse-by-pulse. The new hardware-based control system may stabilize the radiation safety control for the long-term linac operation. In this report the design of the new control system is described along with preliminary test results. |