MC4: Hadron Accelerators
T19: Collimation
Paper Title Page
WEPOTK018 Simulation of Heavy-Ion Beam Losses with Crystal Collimation* 2082
SUSPMF048   use link to see paper's listing under its alternate paper code  
 
  • R. Cai, R. Bruce, R. Bruce, M. D’Andrea, L.S. Esposito, P.D. Hermes, A. Lechner, A. Lechner, D. Mirarchi, J.B. Potoine, S. Redaelli, F. Salvat Pujol, J. Schoofs
    CERN, Meyrin, Switzerland
  • J.B. Potoine
    IES, Montpellier, France
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  With the higher stored energy envisioned for future heavy-ion runs in the LHC and the challenging fragmentation aspect of heavy-ion beams due to interaction with collimator material, the need arises for even more performing collimation systems. One promising solution is crystal channeling, which is used in the HL-LHC baseline and starts with Run III for heavy-ion collimation. To investigate an optimal configuration for the collimation system, a well-tested simulation setup is required. This work shows the simulations of channeling and other coherent effects in the SixTrack-FLUKA Coupling simulation framework and compares simulated loss patterns with data from previous beam tests.
*Research supported by the HL’LHC project
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK018  
About • Received ※ 07 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK033 Layouts for Feasibility Studies of Fixed-Target Experiments at the LHC 2134
 
  • P.D. Hermes, K.A. Dewhurst, A.S. Fomin, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  The Physics Beyond Colliders (PBC) study investigates means of exploiting the potential of the CERN accelerator complex to complement the laboratory’s scientific programme at the main Large Hadron Collider (LHC) experiments. The LHC fixed-target (FT) working group studies new experiments at beam energies up to 7 TeV. One of the proposed experiments is based on a bent crystal, part of the collimation hierarchy, to extract secondary halo particles and steer them onto a target. A second bent crystal immediately downstream of the target is used to study electric and magnetic dipole moments of short-lived baryons. The possibility to install a test stand in the LHC off-momentum collimation Insertion Region (IR3) to demonstrate the feasibility and performance of this challenging scheme is currently under investigation. The integration of a spectrometer magnet into the present layout is particularly critical. In this contribution, we study a possible test setup that could be used in LHC Run 3.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK033  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK034 LHC Beam Collimation During Extended β*-Levelling in Run 3 2138
 
  • F.F. Van der Veken, R. Bruce, M. Hostettler, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  During the third operational Run of the Large Hadron Collider at CERN, starting in 2022, the bunch population will be increased to unprecedented levels requiring to deploy β*-levelling of the luminosity over a wide range of values to cope with the limitations imposed by event pile-up at the experiments and heat load on the triplets induced by collision debris. During this levelling, both beam optics and orbit change in various areas of the ring, in particular around the high-luminosity experiments, where several collimators are installed. This requires adapting the collimation system settings adequately, in particular for the tertiary collimators (TCTs) that protect the inner-triplet magnets. To this end, two strategies are considered: keeping collimators at fixed physical openings while shifting their centres following the beam orbit, or varying also the collimator openings. The latter strategy is planned when the larger optics range will be deployed. In this paper, we investigate several loss scenarios at the TCTs in different steps of the levelling, and present the proposed collimator settings during Run 3.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK034  
About • Received ※ 07 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK035 Layout of the 12 O’clock Collimation Straight Section for the EIC Hadron Storage Ring 2142
 
  • G. Robert-Demolaize, J.S. Berg, K.A. Drees, D. Holmes, H. Lovelace III, S. Peggs, M. Valette
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704.
The design of the Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) calls for using parts of both of the Relativistic Heavy Ion Collider (RHIC) Blue and Yellow beamlines. With the HSR having to circulate low (41 GeV) and high (100+ GeV) energy hadron beams while matching the time of flight in the Electron Storage Ring (ESR), it becomes necessary for the ring lattice to switch from an outer arc to an inner arc in order to accommodate for the change in circumference. To do so, a switchyard is planned for installation in the HSR straight section at 12 o’clock with the other switchyard being placed in the straight section immediately downstream, 10 o’clock. The 12 o’clock straight section is simultaneously dedicated to the EIC 2-stage collimation system. The following reviews the layout constraints in the12 o’clock straight section that come with installing such a switchyard, along with the implications on the linear optics for that straight section at all HSR rigidities. The space allocation, twiss parameters and the mechanical requirements of the HSR betatron collimators that will be installed in this section are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK035  
About • Received ※ 07 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)